{"title":"Energy Efficient WiFi Display","authors":"Chi Zhang, Xinyu Zhang, Ranveer Chandra","doi":"10.1145/2742647.2742654","DOIUrl":null,"url":null,"abstract":"WiFi Display, also called Miracast, is an emerging technology that allows a mobile device (source) to duplicate its screen content to an external display (sink) via a peer-to-peer WiFi link. Despite its diverse application scenarios and growing popularity, Miracast consumes substantial power due to a combination of video encoding/decoding and transmission. In this paper, we first conduct a measurement study to quantify and model key parameters that scale Miracast's power consumption. We then propose a set of optimization mechanisms to bypass redundant codec operations, reduce video tail traffic, and relocate the Miracast channel dynamically to maximize transmission efficiency. We have implemented this energy-efficient Miracast framework on an Android smartphone. Experimental results show that the legacy Miracast system costs 1.3 to 2.4 Watts. Our framework reduces the power consumption by 29% to 61%, depending on the Miracast application's video traffic patterns. Our optimization mechanisms do not affect the video quality, and can even reduce the latency of certain Miracast applications.","PeriodicalId":191203,"journal":{"name":"Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742647.2742654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
WiFi Display, also called Miracast, is an emerging technology that allows a mobile device (source) to duplicate its screen content to an external display (sink) via a peer-to-peer WiFi link. Despite its diverse application scenarios and growing popularity, Miracast consumes substantial power due to a combination of video encoding/decoding and transmission. In this paper, we first conduct a measurement study to quantify and model key parameters that scale Miracast's power consumption. We then propose a set of optimization mechanisms to bypass redundant codec operations, reduce video tail traffic, and relocate the Miracast channel dynamically to maximize transmission efficiency. We have implemented this energy-efficient Miracast framework on an Android smartphone. Experimental results show that the legacy Miracast system costs 1.3 to 2.4 Watts. Our framework reduces the power consumption by 29% to 61%, depending on the Miracast application's video traffic patterns. Our optimization mechanisms do not affect the video quality, and can even reduce the latency of certain Miracast applications.