Residue arithmetic's using reversible logic gates

I. B. K. Raju, P. Kumar, P. Rao
{"title":"Residue arithmetic's using reversible logic gates","authors":"I. B. K. Raju, P. Kumar, P. Rao","doi":"10.1109/ICDCSYST.2014.6926193","DOIUrl":null,"url":null,"abstract":"The Residue number system (RNS) has been employed for efficient parallel carry-free arithmetic computations in DSP applications. Residue addition is the instrumental component in implementing residue converters and channels in RNS. On the other side Reversible Logic is becoming one of the potential power optimization techniques in Low Power CMOS design. In this research paper we have proposed CMOS implementation of two different reversible logic architectures for 4-bit generic modulo-m ripple residue adder using 4×4 TSG, DPG and 3×3 Fredkin Reversible logic gates and one architecture for 4-bit generic modulo-m carry look ahead residue adder using 4×4 RMF and 3×3 Fredkin Reversible logic gates along with two irreversible logic based 4-bit generic modulo-m residue adder one for irreversible 4-bit generic modulo-m ripple residue adder and another for 4-bit generic modulo-m carry look ahead adder. Proposed architectures are analyzed in terms of power, delay, garbage o/p, constant inputs and transistor count using 180nm technology node at 1.8 v with operating frequency of 200 MHz. It is observed that DPG based Reversible Residue Ripple adder has 40% more efficient than irreversible Residue Ripple adder and RMF based Reversible Residue CLA adder has 33% more efficient than irreversible Residue CLA added. The implementation is based on Reversible pass transistor Logic (R-CPL).","PeriodicalId":252016,"journal":{"name":"2014 2nd International Conference on Devices, Circuits and Systems (ICDCS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on Devices, Circuits and Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSYST.2014.6926193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The Residue number system (RNS) has been employed for efficient parallel carry-free arithmetic computations in DSP applications. Residue addition is the instrumental component in implementing residue converters and channels in RNS. On the other side Reversible Logic is becoming one of the potential power optimization techniques in Low Power CMOS design. In this research paper we have proposed CMOS implementation of two different reversible logic architectures for 4-bit generic modulo-m ripple residue adder using 4×4 TSG, DPG and 3×3 Fredkin Reversible logic gates and one architecture for 4-bit generic modulo-m carry look ahead residue adder using 4×4 RMF and 3×3 Fredkin Reversible logic gates along with two irreversible logic based 4-bit generic modulo-m residue adder one for irreversible 4-bit generic modulo-m ripple residue adder and another for 4-bit generic modulo-m carry look ahead adder. Proposed architectures are analyzed in terms of power, delay, garbage o/p, constant inputs and transistor count using 180nm technology node at 1.8 v with operating frequency of 200 MHz. It is observed that DPG based Reversible Residue Ripple adder has 40% more efficient than irreversible Residue Ripple adder and RMF based Reversible Residue CLA adder has 33% more efficient than irreversible Residue CLA added. The implementation is based on Reversible pass transistor Logic (R-CPL).
使用可逆逻辑门的残数算法
在DSP应用中,残数系统(RNS)被用于高效的并行无进位运算。残数加法是实现RNS残数转换器和信道的重要组成部分。另一方面,可逆逻辑正成为低功耗CMOS设计中潜在的功率优化技术之一。在本研究论文中,我们使用4×4 TSG为4位通用模量m纹波剩余加法器提出了两种不同的可逆逻辑架构的CMOS实现,DPG和3×3 Fredkin可逆逻辑门和一个使用4×4 RMF和3×3 Fredkin可逆逻辑门以及两个基于不可逆逻辑的4位通用模m残差加法器的4位通用模m残差加法器的架构,一个用于不可逆的4位通用模m纹波残差加法器,另一个用于4位通用模m残差加法器。采用180nm技术节点,工作频率为200mhz,电压为1.8 v,从功耗、延迟、垃圾输出/输出、恒定输入和晶体管数量等方面分析了所提出的架构。结果表明,基于DPG的可逆残余纹波加法器比不可逆残余纹波加法器效率提高40%,基于RMF的可逆残余CLA加法器比不可逆残余CLA加法器效率提高33%。其实现基于可逆通型晶体管逻辑(R-CPL)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信