Resty Wulanningrum Penggunaan Algoritma K- Nearest Neighbor untuk Identifikasi Citra Kamboja

Resty Wulanningrum
{"title":"Resty Wulanningrum Penggunaan Algoritma K- Nearest Neighbor untuk Identifikasi Citra Kamboja","authors":"Resty Wulanningrum","doi":"10.29407/gj.v2i2.12253","DOIUrl":null,"url":null,"abstract":"Abstrak– Teknologi saat ini sangat berkembang dengan pesat, terutama dari sectorpertanian. Dalam hal pertanian saja, tidak hanya dalam bidang tanaman khusus makanan pokok,tetapi sudah merambah ke dunia tanaman hias. Tanaman hias saat ini juga sangat tinggipermintaan, salah satunya adalah tanaman hiaskamboja. Kamboja merupakan salah satu tanamahias dengan banyak jenis. Jenis yang berbeda- beda ini juga memiliki ciri serta aroma yangberbeda- beda. Tak jarang sebagai orang awam sering salah menyebutkan jenis bunga kamboja ini.Karena secara umum terlihat sama bentuknya, ternyata bunga kamboja memiliki ciri yang unik daribentuk serta warnanya.Dari permasalahan di atas, maka dibuatlah sebuah rumusan masalah bagaimana membuatsebuah system untuk mengidentifikasi citra bunga kamboja dengan menggunakan algoritma KNearest Neighbor?Pada penelitian ini yang digunakan adalah jenis plumeria obtusa, plumeria rubra, danplumeria cendana. Jeni tanaman yang digunakan ini memiliki jumlah kelopak bunga yang sama,yaitu 5, tetapi bentuknya berbeda- beda. Data yang digunakan sebanyak 20 citra bunga setiapjenisnya. Dari 20 data tersebut akan dibuat 5 sekenario ujicoba untuk mendapatkan hasil yangterbaik. Hasil terbaik pada ujicoba yang dilakukan adalah pada sekenario pertama dengan akurasisebesar 88,9% dan yang terkecil pada sekenario ke- 5 yaitu sebesar 75,9 %. Hasil ujicoba yangbervariasi tersebut dipengaruhi oleh data training dan data testing. Semakin banyak datatrainingnya maka semakin tinggi pula hasil akurasi identifikasinya, begitu sebaliknya. Disarankanmenggunakan metode ekstraksi ciri yang lain untuk mendapatkan hasil yang maksimal.Kata Kunci— Kamboja , K-NN, Identifikasi","PeriodicalId":200108,"journal":{"name":"Generation Journal","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Generation Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29407/gj.v2i2.12253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstrak– Teknologi saat ini sangat berkembang dengan pesat, terutama dari sectorpertanian. Dalam hal pertanian saja, tidak hanya dalam bidang tanaman khusus makanan pokok,tetapi sudah merambah ke dunia tanaman hias. Tanaman hias saat ini juga sangat tinggipermintaan, salah satunya adalah tanaman hiaskamboja. Kamboja merupakan salah satu tanamahias dengan banyak jenis. Jenis yang berbeda- beda ini juga memiliki ciri serta aroma yangberbeda- beda. Tak jarang sebagai orang awam sering salah menyebutkan jenis bunga kamboja ini.Karena secara umum terlihat sama bentuknya, ternyata bunga kamboja memiliki ciri yang unik daribentuk serta warnanya.Dari permasalahan di atas, maka dibuatlah sebuah rumusan masalah bagaimana membuatsebuah system untuk mengidentifikasi citra bunga kamboja dengan menggunakan algoritma KNearest Neighbor?Pada penelitian ini yang digunakan adalah jenis plumeria obtusa, plumeria rubra, danplumeria cendana. Jeni tanaman yang digunakan ini memiliki jumlah kelopak bunga yang sama,yaitu 5, tetapi bentuknya berbeda- beda. Data yang digunakan sebanyak 20 citra bunga setiapjenisnya. Dari 20 data tersebut akan dibuat 5 sekenario ujicoba untuk mendapatkan hasil yangterbaik. Hasil terbaik pada ujicoba yang dilakukan adalah pada sekenario pertama dengan akurasisebesar 88,9% dan yang terkecil pada sekenario ke- 5 yaitu sebesar 75,9 %. Hasil ujicoba yangbervariasi tersebut dipengaruhi oleh data training dan data testing. Semakin banyak datatrainingnya maka semakin tinggi pula hasil akurasi identifikasinya, begitu sebaliknya. Disarankanmenggunakan metode ekstraksi ciri yang lain untuk mendapatkan hasil yang maksimal.Kata Kunci— Kamboja , K-NN, Identifikasi
抽象的——今天的技术发展非常迅速,尤其是在农业部门。就农业而言,不仅在主食植物中,而且已经进入了室内植物。如今,室内植物的需求也非常高,其中之一是柬埔寨野生植物。柬埔寨是许多种类的土地之一。不同的种类也有不同的特征和气味。这是一种常见的柬埔寨花。柬埔寨花的形状和颜色都很相似,这证明其独特。从上述问题中,创建一个问题公式,如何使用最邻近的算法来识别柬埔寨花的图像?在这个研究中使用的是多哈玛,鲁布拉,多玛檀香。这种植物的种类有相同数量的花瓣,即5种,但形状不同。数据使用了20个花的图像。在这20个数据中,我们将进行5个测试,以获得最佳结果。在第一次试验中效果最好的是第一次试验的8。9%,第5次试验的最小结果是75.9%。培训和测试数据影响了各种试验结果。他训练的数据越多,标识准确度就越高,反之亦然。建议使用其他特征提取方法获得最大的结果。关键词——柬埔寨,K-NN,身份证
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信