Sondipon Paul, Brian Waldron, Farhad Jazaei, Daniel Larsen
{"title":"Wellfield optimization to minimize contaminant migration from a surficial to a semi-confined aquifer using numerical modeling","authors":"Sondipon Paul, Brian Waldron, Farhad Jazaei, Daniel Larsen","doi":"10.1111/1752-1688.13150","DOIUrl":null,"url":null,"abstract":"<p>The shallow, Memphis, and Fort Pillow aquifers are the three major water-bearing strata beneath Memphis, Tennessee, where the Memphis aquifer serves as the primary groundwater source. The upper Claiborne confining unit (UCCU) separates shallow and Memphis aquifers across the majority of Shelby County, acting as an upper protective layer for the Memphis aquifer. However, hydrogeologic breaches within the UCCU create a hydraulic connection and provide an avenue for potential contaminant migration from the shallow to the Memphis aquifer. This research aims to minimize contaminant migration, mitigate risks, extend existing wells' life that may face water contamination, and find suitable locations for future well construction. Several strategies are developed addressing well depth, seasonal well operation, and mapping no-drilling or red zones to provide practical solutions. A numerical groundwater modeling technique is developed for each strategy that includes stochastic simulation–optimization and customized simulation models depending on the strategy. The models result in thousands of numerical simulations for each scenario to identify recurring patterns of contaminant movement to and through the Memphis aquifer. The results indicate that optimum well positions (spatially and vertically) and modification to pumping can increase the life expectancy of wellfields, offer sustainable management of the Memphis aquifer, and reduce contaminant migration through 2050.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13150","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The shallow, Memphis, and Fort Pillow aquifers are the three major water-bearing strata beneath Memphis, Tennessee, where the Memphis aquifer serves as the primary groundwater source. The upper Claiborne confining unit (UCCU) separates shallow and Memphis aquifers across the majority of Shelby County, acting as an upper protective layer for the Memphis aquifer. However, hydrogeologic breaches within the UCCU create a hydraulic connection and provide an avenue for potential contaminant migration from the shallow to the Memphis aquifer. This research aims to minimize contaminant migration, mitigate risks, extend existing wells' life that may face water contamination, and find suitable locations for future well construction. Several strategies are developed addressing well depth, seasonal well operation, and mapping no-drilling or red zones to provide practical solutions. A numerical groundwater modeling technique is developed for each strategy that includes stochastic simulation–optimization and customized simulation models depending on the strategy. The models result in thousands of numerical simulations for each scenario to identify recurring patterns of contaminant movement to and through the Memphis aquifer. The results indicate that optimum well positions (spatially and vertically) and modification to pumping can increase the life expectancy of wellfields, offer sustainable management of the Memphis aquifer, and reduce contaminant migration through 2050.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.