{"title":"A motion generation system for humanoid robots - Tai Chi motion","authors":"K. Noritake, S. Kato, T. Yamakita, H. Itoh","doi":"10.1109/MHS.2003.1249946","DOIUrl":null,"url":null,"abstract":"This paper proposes a static posture based motion generation system for humanoid robots. The system generates a sequence of motion from given several postures, and the motion is smooth and stable in the balance. We have produced all the motions of Tai Chi Chuan by the system. Motion generation for humanoids has been studied mainly based on the dynamics. Dynamic based method has, however, some defects: e.g., numerous parameters which can not be always prepared, expensive computational cost and no guarantee that the motions are stable in balance. We have, thus studied less dependent-on-dynamics approach. A motion is described as a sequence of postures. Our system figure out if we need extra postures to insert stability. This method enables humanoid robot, HOAP-1 to do Tai Chi Chuan.","PeriodicalId":358698,"journal":{"name":"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2003.1249946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper proposes a static posture based motion generation system for humanoid robots. The system generates a sequence of motion from given several postures, and the motion is smooth and stable in the balance. We have produced all the motions of Tai Chi Chuan by the system. Motion generation for humanoids has been studied mainly based on the dynamics. Dynamic based method has, however, some defects: e.g., numerous parameters which can not be always prepared, expensive computational cost and no guarantee that the motions are stable in balance. We have, thus studied less dependent-on-dynamics approach. A motion is described as a sequence of postures. Our system figure out if we need extra postures to insert stability. This method enables humanoid robot, HOAP-1 to do Tai Chi Chuan.