A family of parallel-prefix modulo 2/sup n/-1 adders

G. Dimitrakopoulos, H. T. Vergos, D. Nikolos, C. Efstathiou
{"title":"A family of parallel-prefix modulo 2/sup n/-1 adders","authors":"G. Dimitrakopoulos, H. T. Vergos, D. Nikolos, C. Efstathiou","doi":"10.1109/ASAP.2003.1212856","DOIUrl":null,"url":null,"abstract":"We reveal the cyclic nature of idempotency in the case of modulo 2/sup n/-1 addition. Then based on this property, we derive for each n, a family of minimum logic depth modulo 2/sup n/-1 adders, which allows several trade-offs between the number of operators, the internal wire length, and the fanout of internal nodes. Performance data, gathered using static CMOS implementations, reveal that the proposed architectures outperform all previously reported ones in terms of area and/or operation speed.","PeriodicalId":261592,"journal":{"name":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2003.1212856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We reveal the cyclic nature of idempotency in the case of modulo 2/sup n/-1 addition. Then based on this property, we derive for each n, a family of minimum logic depth modulo 2/sup n/-1 adders, which allows several trade-offs between the number of operators, the internal wire length, and the fanout of internal nodes. Performance data, gathered using static CMOS implementations, reveal that the proposed architectures outperform all previously reported ones in terms of area and/or operation speed.
一组并行前缀模2/sup n/-1加法器
我们揭示了模2/sup n/-1加法的幂等性的循环性质。然后基于这一性质,我们为每个n导出一个最小逻辑深度模数为2/sup n/-1的加法器,它允许在运算符数量、内部线长度和内部节点的扇出之间进行若干权衡。使用静态CMOS实现收集的性能数据显示,所提出的架构在面积和/或运行速度方面优于所有先前报道的架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信