New Range and k-NN Query Processing Algorithms Using Materialization Technique on Spatial Network

Jung-Ho Um, N. K. Chowdhury, Jae-Woo Chang
{"title":"New Range and k-NN Query Processing Algorithms Using Materialization Technique on Spatial Network","authors":"Jung-Ho Um, N. K. Chowdhury, Jae-Woo Chang","doi":"10.1109/ISITC.2007.69","DOIUrl":null,"url":null,"abstract":"In this paper, we propose new query processing algorithms for typical spatial queries in SNDB, such as range search and k nearest neighbors (k-NN) search. Our two query processing algorithms can reduce the computation time of network distance between a pair of nodes and the number of disk I/Os required for accessing nodes by using a materialization-based technique with the shortest network distances of all the nodes in the spatial network. Thus, our query processing algorithms improve the existing efficient k-NN (INE) and range search (RNE) algorithms proposed by [1]. It is shown that our range query processing algorithm achieves about up to one of magnitude better performance than the RNE and our k- NN query processing algorithm achieves about up to 150% performance improvements over INE.","PeriodicalId":394071,"journal":{"name":"2007 International Symposium on Information Technology Convergence (ISITC 2007)","volume":"61 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Information Technology Convergence (ISITC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITC.2007.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose new query processing algorithms for typical spatial queries in SNDB, such as range search and k nearest neighbors (k-NN) search. Our two query processing algorithms can reduce the computation time of network distance between a pair of nodes and the number of disk I/Os required for accessing nodes by using a materialization-based technique with the shortest network distances of all the nodes in the spatial network. Thus, our query processing algorithms improve the existing efficient k-NN (INE) and range search (RNE) algorithms proposed by [1]. It is shown that our range query processing algorithm achieves about up to one of magnitude better performance than the RNE and our k- NN query processing algorithm achieves about up to 150% performance improvements over INE.
基于空间网络物化技术的范围和k-NN查询处理新算法
本文针对SNDB中典型的空间查询,提出了范围搜索和k近邻搜索等新的查询处理算法。我们的两种查询处理算法都可以利用空间网络中所有节点中网络距离最短的物化技术,减少一对节点之间网络距离的计算时间和访问节点所需的磁盘I/ o数。因此,我们的查询处理算法改进了[1]提出的现有高效k-NN (INE)和range search (RNE)算法。结果表明,我们的距离查询处理算法比RNE的性能提高了一个数量级,我们的k- NN查询处理算法比INE的性能提高了150%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信