A unified expression for split-radix DFT algorithms

G. Bi, Gang Li, Xiumei Li
{"title":"A unified expression for split-radix DFT algorithms","authors":"G. Bi, Gang Li, Xiumei Li","doi":"10.1109/ICCCAS.2010.5581988","DOIUrl":null,"url":null,"abstract":"This paper presents a unified expression that covers all previously reported split-radix-2/2m, where m is an integer larger than one, algorithms. New split-radix algorithms can be also derived from this unified expression. These algorithms flexibly support DFT sizes N = q · 2r, where q is generally an odd integer. Comparisons show that the computational complexity required by the proposed algorithms for the DFT size N = q · 2r is generally not more than that for the DFT size N = 2r. In particular, our examples show that the split-radix-2/4 algorithm requires a smaller computational complexity compared to other split-radix algorithms and the prime factor algorithms.","PeriodicalId":199950,"journal":{"name":"2010 International Conference on Communications, Circuits and Systems (ICCCAS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Communications, Circuits and Systems (ICCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCAS.2010.5581988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a unified expression that covers all previously reported split-radix-2/2m, where m is an integer larger than one, algorithms. New split-radix algorithms can be also derived from this unified expression. These algorithms flexibly support DFT sizes N = q · 2r, where q is generally an odd integer. Comparisons show that the computational complexity required by the proposed algorithms for the DFT size N = q · 2r is generally not more than that for the DFT size N = 2r. In particular, our examples show that the split-radix-2/4 algorithm requires a smaller computational complexity compared to other split-radix algorithms and the prime factor algorithms.
分基DFT算法的统一表达式
本文给出了一个统一的表达式,涵盖了所有先前报道的分割基数-2/2m算法,其中m是大于1的整数。从这个统一表达式还可以推导出新的分基算法。这些算法灵活地支持DFT大小N = q·2r,其中q一般为奇数。比较表明,当DFT大小为N = q·2r时,所提算法的计算复杂度一般不大于当DFT大小为N = 2r时的计算复杂度。特别是,我们的示例表明,与其他分割基数算法和素数因子算法相比,分割基数-2/4算法需要更小的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信