Ambiguity, Robust Statistics, and Raiffa's Critique

ERN: Search Pub Date : 2020-06-30 DOI:10.2139/ssrn.3388410
Filippo Massari
{"title":"Ambiguity, Robust Statistics, and Raiffa's Critique","authors":"Filippo Massari","doi":"10.2139/ssrn.3388410","DOIUrl":null,"url":null,"abstract":"I show that ambiguity-averse decision functionals matched with the multiple-prior learning model are more robust to model misspecification than the standard expected utility with Bayesian learning. However, these criteria may fail to deliver robust decisions because the multiple-prior learning model inherits the same fragility of Bayesian learning. There are misspecified learning problems in which an ambiguity-averse DM optimally chooses a sequence of ambiguous acts over a sequence of risky acts that would deliver a strictly higher average utility.","PeriodicalId":153208,"journal":{"name":"ERN: Search","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3388410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

I show that ambiguity-averse decision functionals matched with the multiple-prior learning model are more robust to model misspecification than the standard expected utility with Bayesian learning. However, these criteria may fail to deliver robust decisions because the multiple-prior learning model inherits the same fragility of Bayesian learning. There are misspecified learning problems in which an ambiguity-averse DM optimally chooses a sequence of ambiguous acts over a sequence of risky acts that would deliver a strictly higher average utility.
模糊性,稳健统计和Raiffa的批判
我表明,与多先验学习模型相匹配的反对模糊性的决策函数比贝叶斯学习的标准期望效用对模型错误规范的鲁棒性更高。然而,这些标准可能无法提供健壮的决策,因为多先验学习模型继承了贝叶斯学习的脆弱性。有一些错误指定的学习问题,在这些问题中,一个厌恶模糊性的决策最优地选择一系列模棱两可的行为,而不是一系列具有风险的行为,这些行为将提供严格更高的平均效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信