A Comprehensive Cryogenic CMOS Variability and Reliability Assessment using Transistor Arrays

A. Grill, J. Michl, J. Diaz-Fortuny, A. Beckers, E. Bury, A. Chasin, T. Grasser, M. Waltl, B. Kaczer, K. De Greve
{"title":"A Comprehensive Cryogenic CMOS Variability and Reliability Assessment using Transistor Arrays","authors":"A. Grill, J. Michl, J. Diaz-Fortuny, A. Beckers, E. Bury, A. Chasin, T. Grasser, M. Waltl, B. Kaczer, K. De Greve","doi":"10.1109/EDTM55494.2023.10102937","DOIUrl":null,"url":null,"abstract":"Integrating CMOS circuits and qubits at cryogenic temperatures requires high-frequency operation in the GHz range together with ultra-low power consumption and very low noise figures. One approach to reduce power consumption is to optimize circuits towards operation at lower supply voltages. However, this reduces the tolerable margins on device-to-device variations and parameter degradation. In this study, we present a comprehensive overview on the time-zero performance, variability, and reliability of a 28 nm bulk CMOS technology using thousands of transistors measured from room temperature down to 4 K. Moreover, we present a quantum-mechanical extension of the nonradiative multiphonon (NMP) model derived from bias temperature instability (BTI) measurements on long-channel transistors of the same technology to explain charge trapping kinetics at cryogenic temperatures.","PeriodicalId":418413,"journal":{"name":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTM55494.2023.10102937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating CMOS circuits and qubits at cryogenic temperatures requires high-frequency operation in the GHz range together with ultra-low power consumption and very low noise figures. One approach to reduce power consumption is to optimize circuits towards operation at lower supply voltages. However, this reduces the tolerable margins on device-to-device variations and parameter degradation. In this study, we present a comprehensive overview on the time-zero performance, variability, and reliability of a 28 nm bulk CMOS technology using thousands of transistors measured from room temperature down to 4 K. Moreover, we present a quantum-mechanical extension of the nonradiative multiphonon (NMP) model derived from bias temperature instability (BTI) measurements on long-channel transistors of the same technology to explain charge trapping kinetics at cryogenic temperatures.
基于晶体管阵列的低温CMOS变异性和可靠性综合评估
在低温下集成CMOS电路和量子位需要GHz范围内的高频工作,以及超低功耗和极低噪声。降低功耗的一种方法是优化电路,使其在较低的电源电压下工作。然而,这减少了设备到设备变化和参数退化的可容忍范围。在这项研究中,我们全面概述了28纳米体CMOS技术的时间零性能、可变性和可靠性,该技术使用数千个晶体管从室温到4 K进行测量。此外,我们提出了非辐射多声子(NMP)模型的量子力学扩展,该模型来源于对相同技术的长通道晶体管的偏置温度不稳定性(BTI)测量,以解释低温下的电荷捕获动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信