Enhancing learning objects recommendation using multi-criteria recommender systems

Mohammed Hassan, Mohamed Hamada
{"title":"Enhancing learning objects recommendation using multi-criteria recommender systems","authors":"Mohammed Hassan, Mohamed Hamada","doi":"10.1109/TALE.2016.7851771","DOIUrl":null,"url":null,"abstract":"To achieve meaningful learning goals, both pedagogues and tutees need frequent supports on how to obtain relevant materials. Recommendation systems have been proved as important tools that assist learners in getting useful learning objects. Nowadays, various recommendation techniques are used to build a system that can find and suggests learning objects to learners. This paper proposed to use a multi-criteria recommendation technique and aggregation function approach for modeling user preferences on learning objects to improve the quality of recommendations given by the existing traditional recommendation systems. The proposed plan is to develop a neural network model and a hybrid of Genetic and Gradient descent algorithms to train the model using real datasets to learn the behavior of the inputs for accurate predictions of learners' preferences.","PeriodicalId":117659,"journal":{"name":"2016 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TALE.2016.7851771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

To achieve meaningful learning goals, both pedagogues and tutees need frequent supports on how to obtain relevant materials. Recommendation systems have been proved as important tools that assist learners in getting useful learning objects. Nowadays, various recommendation techniques are used to build a system that can find and suggests learning objects to learners. This paper proposed to use a multi-criteria recommendation technique and aggregation function approach for modeling user preferences on learning objects to improve the quality of recommendations given by the existing traditional recommendation systems. The proposed plan is to develop a neural network model and a hybrid of Genetic and Gradient descent algorithms to train the model using real datasets to learn the behavior of the inputs for accurate predictions of learners' preferences.
使用多标准推荐系统增强学习对象推荐
为了实现有意义的学习目标,教师和学生都需要在如何获取相关材料方面得到经常的支持。推荐系统已被证明是帮助学习者获得有用学习对象的重要工具。目前,各种推荐技术被用于构建一个能够发现并向学习者推荐学习对象的系统。本文提出采用多准则推荐技术和聚合函数方法对学习对象上的用户偏好进行建模,以提高现有传统推荐系统的推荐质量。提出的计划是开发一个神经网络模型和遗传和梯度下降算法的混合,使用真实数据集来训练模型,以学习输入的行为,从而准确预测学习者的偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信