{"title":"Optimal trajectory of a mobile robot by a Genetic Design Fuzzy logic controller","authors":"C. Rekik, M. Jallouli, N. Derbel","doi":"10.1109/ACTEA.2009.5227926","DOIUrl":null,"url":null,"abstract":"Obstacle avoidance and path planning are the most important problems in mobile robots. Besides, finding methods for controlling and decreasing the real robot error in path have been another target for researchers investigation. Usual methods have two separated parts, research target and path planning with obstacle avoidance. In this context, a fuzzy logic controller has been constructed in order to train an intelligent robot. Genetic algorithms are used to optimize the consequences of a Sugeno fuzzy logic optimal controller for the mobile robot navigation. This is to search a target in an environment with and without obstacles. Simulation results verify successful applications of method for real motion situations. An application have been effected in the Khepera robot demonstrating. The Khepera robot can go to the goal and avoid the obstacles successfully.","PeriodicalId":308909,"journal":{"name":"2009 International Conference on Advances in Computational Tools for Engineering Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Advances in Computational Tools for Engineering Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACTEA.2009.5227926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Obstacle avoidance and path planning are the most important problems in mobile robots. Besides, finding methods for controlling and decreasing the real robot error in path have been another target for researchers investigation. Usual methods have two separated parts, research target and path planning with obstacle avoidance. In this context, a fuzzy logic controller has been constructed in order to train an intelligent robot. Genetic algorithms are used to optimize the consequences of a Sugeno fuzzy logic optimal controller for the mobile robot navigation. This is to search a target in an environment with and without obstacles. Simulation results verify successful applications of method for real motion situations. An application have been effected in the Khepera robot demonstrating. The Khepera robot can go to the goal and avoid the obstacles successfully.