Clovis Eberhart, Jérémy Dubut, J. Haydon, I. Hasuo
{"title":"Formal Verification of Safety Architectures for Automated Driving","authors":"Clovis Eberhart, Jérémy Dubut, J. Haydon, I. Hasuo","doi":"10.1109/IV55152.2023.10186763","DOIUrl":null,"url":null,"abstract":"Safety architectures play a crucial role in the safety assurance of automated driving vehicles (ADVs). They can be used as safety envelopes of black-box ADV controllers, and for graceful degradation from one ODD to another. Building on our previous work on the formalization of responsibility-sensitive safety (RSS), we introduce a novel program logic that accommodates assume-guarantee reasoning and fallback-like constructs. This allows us to formally define and prove the safety of existing and novel safety architectures. We apply the logic to a pull over scenario and experimentally evaluate the resulting safety architecture.","PeriodicalId":195148,"journal":{"name":"2023 IEEE Intelligent Vehicles Symposium (IV)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV55152.2023.10186763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Safety architectures play a crucial role in the safety assurance of automated driving vehicles (ADVs). They can be used as safety envelopes of black-box ADV controllers, and for graceful degradation from one ODD to another. Building on our previous work on the formalization of responsibility-sensitive safety (RSS), we introduce a novel program logic that accommodates assume-guarantee reasoning and fallback-like constructs. This allows us to formally define and prove the safety of existing and novel safety architectures. We apply the logic to a pull over scenario and experimentally evaluate the resulting safety architecture.