Data association for multi target-multi model particle filtering: implicit assignment to weighted assignment

M. Zaveri, U. Desai, S. Merchant
{"title":"Data association for multi target-multi model particle filtering: implicit assignment to weighted assignment","authors":"M. Zaveri, U. Desai, S. Merchant","doi":"10.1109/SPCOM.2004.1458350","DOIUrl":null,"url":null,"abstract":"In multiple target tracking the data association, i.e. observation to track assignment and the model selection to track arbitrary trajectory play an important role for success of any tracking algorithm. In this paper we propose various methods for data association in the presence of multiple targets and dense clutter along with the tracking algorithm using multiple model based particle filtering. Particle filtering allows one to use non-linear/non-Gaussian state space model for target tracking. Data association problem is solved using (a) an implicit observation, (b) a centroid of observations (c) Markov random field (MRF) for observation to track assignment.","PeriodicalId":424981,"journal":{"name":"2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM.2004.1458350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In multiple target tracking the data association, i.e. observation to track assignment and the model selection to track arbitrary trajectory play an important role for success of any tracking algorithm. In this paper we propose various methods for data association in the presence of multiple targets and dense clutter along with the tracking algorithm using multiple model based particle filtering. Particle filtering allows one to use non-linear/non-Gaussian state space model for target tracking. Data association problem is solved using (a) an implicit observation, (b) a centroid of observations (c) Markov random field (MRF) for observation to track assignment.
多目标多模型粒子滤波的数据关联:隐式赋值到加权赋值
在多目标跟踪中,数据关联,即观察到跟踪分配和跟踪任意轨迹的模型选择对任何跟踪算法的成功都起着重要的作用。本文提出了多目标和密集杂波存在下的各种数据关联方法以及基于多模型粒子滤波的跟踪算法。粒子滤波允许使用非线性/非高斯状态空间模型进行目标跟踪。使用(a)隐式观测,(b)观测质心,(c)马尔可夫随机场(MRF)进行观测跟踪分配来解决数据关联问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信