Testing Framework for in-Hardware Verification of the Hardware Modules Generated Using HLS

Julián Caba, Fernando Rincón Calle, J. Dondo, Jesús Barba, Manuel J. Abaldea, J. C. López
{"title":"Testing Framework for in-Hardware Verification of the Hardware Modules Generated Using HLS","authors":"Julián Caba, Fernando Rincón Calle, J. Dondo, Jesús Barba, Manuel J. Abaldea, J. C. López","doi":"10.1109/PATMOS.2018.8464157","DOIUrl":null,"url":null,"abstract":"High-Level Synthesis (HLS) allows Field Programmable Gate Array (FPGA) developers to easily implement complex applications in silicon, addressing the ever-growing size and complexity of modern embedded reconfigurable systems. Unfortunately, in spite of these advancements, new non-negligible verification problems arise. For instance, the co-simulation strategy may not provide trustworthy results due to the variable accuracy of simulation, or hardware synthesis issues (e.g. those related to signal routing) which are not detectable in the simulation. Hence, developers need new verification mechanisms to reduce the gap between the technology and the verification needs. In this paper, we propose a testing framework and a hardware verification platform based on FPGA technology in order to improve the verification accuracy and enable effortless and fully automatic in-hardware system validation. For instance, one of the mechanisms is the inclusion of physical configuration macros (e.g., clock rate configuration macro) and test assertions based on physical parameters in the verification environment (e.g., timing assertions). Experiment results demonstrate our approach in the context of a case study remaining the same testing technology independently of the module abstraction level.","PeriodicalId":234100,"journal":{"name":"2018 28th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 28th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PATMOS.2018.8464157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-Level Synthesis (HLS) allows Field Programmable Gate Array (FPGA) developers to easily implement complex applications in silicon, addressing the ever-growing size and complexity of modern embedded reconfigurable systems. Unfortunately, in spite of these advancements, new non-negligible verification problems arise. For instance, the co-simulation strategy may not provide trustworthy results due to the variable accuracy of simulation, or hardware synthesis issues (e.g. those related to signal routing) which are not detectable in the simulation. Hence, developers need new verification mechanisms to reduce the gap between the technology and the verification needs. In this paper, we propose a testing framework and a hardware verification platform based on FPGA technology in order to improve the verification accuracy and enable effortless and fully automatic in-hardware system validation. For instance, one of the mechanisms is the inclusion of physical configuration macros (e.g., clock rate configuration macro) and test assertions based on physical parameters in the verification environment (e.g., timing assertions). Experiment results demonstrate our approach in the context of a case study remaining the same testing technology independently of the module abstraction level.
HLS生成硬件模块的硬件内验证测试框架
高级综合(HLS)允许现场可编程门阵列(FPGA)开发人员在硅上轻松实现复杂的应用,解决现代嵌入式可重构系统不断增长的尺寸和复杂性。不幸的是,尽管有这些进步,新的不可忽视的验证问题出现了。例如,联合仿真策略可能无法提供值得信赖的结果,这是由于仿真的可变精度,或者在仿真中无法检测到的硬件合成问题(例如与信号路由相关的问题)。因此,开发人员需要新的验证机制来缩小技术和验证需求之间的差距。本文提出了一种基于FPGA技术的测试框架和硬件验证平台,以提高验证精度,实现轻松、全自动的硬件系统验证。例如,其中一种机制是包含物理配置宏(例如,时钟速率配置宏)和基于验证环境中的物理参数的测试断言(例如,定时断言)。实验结果表明,我们的方法在案例研究的背景下保持了独立于模块抽象级别的相同测试技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信