{"title":"A Framework for Analyzing Real-Time Tweets to Detect Terrorist Activities","authors":"M. Abrar, M. Arefin, Md. Sabir Hossain","doi":"10.1109/ECACE.2019.8679430","DOIUrl":null,"url":null,"abstract":"Terrorist organizations use different social media as a tool for spreading their views and influence general people to join their terrorist activities. Twitter is the most common and easy way to reach mass people within a small amount of time. In this paper, we have focused on the development of a system that can automatically detect terrorism-supporting tweets by real-time analyzation. In this system, we have developed a frontend for realtime viewing of the tweets that are detected using this system. We have also compared the performance of two different machine learning classifiers, Support Vector Machine (SVM) and Multinomial Logistic Regression and foundthe first one works better. As our system is highly dependent on data, for more accuracy we added a re-train module. By using this module wrongly classified tweets can be added to the training dataset and train the whole system again for better performance. This system will help to ban the terrorist accounts from twitter so that they can't promote their views or spread fear among general people.","PeriodicalId":226060,"journal":{"name":"2019 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"518 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECACE.2019.8679430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Terrorist organizations use different social media as a tool for spreading their views and influence general people to join their terrorist activities. Twitter is the most common and easy way to reach mass people within a small amount of time. In this paper, we have focused on the development of a system that can automatically detect terrorism-supporting tweets by real-time analyzation. In this system, we have developed a frontend for realtime viewing of the tweets that are detected using this system. We have also compared the performance of two different machine learning classifiers, Support Vector Machine (SVM) and Multinomial Logistic Regression and foundthe first one works better. As our system is highly dependent on data, for more accuracy we added a re-train module. By using this module wrongly classified tweets can be added to the training dataset and train the whole system again for better performance. This system will help to ban the terrorist accounts from twitter so that they can't promote their views or spread fear among general people.