Distance Metric Approach for Nearest Neighbour Recall of Neonatal EEG

B. Murphy, G. Boylan, G. Lightbody, W. Marnane
{"title":"Distance Metric Approach for Nearest Neighbour Recall of Neonatal EEG","authors":"B. Murphy, G. Boylan, G. Lightbody, W. Marnane","doi":"10.1109/ISSC.2018.8585364","DOIUrl":null,"url":null,"abstract":"Clinical neurophysiologists often find it difficult to recall rare EEG patterns despite the fact that this information could be diagnostic and help with treatment intervention. Having the neurophysiologist physically searching through previous neonatal EEG recordings is a cumbersome and time consuming task. This paper examines the performance of a brute force distance metric approach to locate similar neonatal EEG patterns. This preliminary work is to set a baseline for neonatal EEG nearest neighbour pattern recall. A fixed point distance metric and an elastic distance metric are evaluated in this paper on the time series data and on the features extracted from data. The system was tested on six different neonatal EEG pattern types with 430 events in total and the results are presented.","PeriodicalId":174854,"journal":{"name":"2018 29th Irish Signals and Systems Conference (ISSC)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 29th Irish Signals and Systems Conference (ISSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSC.2018.8585364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical neurophysiologists often find it difficult to recall rare EEG patterns despite the fact that this information could be diagnostic and help with treatment intervention. Having the neurophysiologist physically searching through previous neonatal EEG recordings is a cumbersome and time consuming task. This paper examines the performance of a brute force distance metric approach to locate similar neonatal EEG patterns. This preliminary work is to set a baseline for neonatal EEG nearest neighbour pattern recall. A fixed point distance metric and an elastic distance metric are evaluated in this paper on the time series data and on the features extracted from data. The system was tested on six different neonatal EEG pattern types with 430 events in total and the results are presented.
新生儿脑电图最近邻回忆的距离度量方法
临床神经生理学家经常发现很难回忆起罕见的脑电图模式,尽管这些信息可以用于诊断和帮助治疗干预。让神经生理学家通过以前的新生儿脑电图记录进行物理搜索是一项繁琐且耗时的任务。本文研究了一种蛮力距离度量方法的性能,以定位相似的新生儿脑电图模式。这项初步工作是为新生儿脑电图最近邻居模式回忆设定基线。本文对时间序列数据和提取的特征进行了定点距离度量和弹性距离度量。该系统在6种不同的新生儿脑电图类型上进行了测试,共430个事件,并给出了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信