Work-in-Progress: Ultra-fast yet Accurate Performance Prediction for Deep Neural Network Accelerators

Konstantin Lübeck, Alexander Louis-Ferdinand Jung, Felix Wedlich, O. Bringmann
{"title":"Work-in-Progress: Ultra-fast yet Accurate Performance Prediction for Deep Neural Network Accelerators","authors":"Konstantin Lübeck, Alexander Louis-Ferdinand Jung, Felix Wedlich, O. Bringmann","doi":"10.1109/CASES55004.2022.00020","DOIUrl":null,"url":null,"abstract":"We present an automatic methodology to accurately predict the performance of Deep Neural Network (DNN) accelerators using abstract descriptions of accelerator architectures and DNNs with a high degree of flexibility. By mapping partially unrolled neural network layers onto accelerator architectures, we automatically construct an analytical performance model, exploiting the dataflow-driven nature of DNNs that allows us to evaluate only a few loop iterations to determine the performance of a whole DNN layer.","PeriodicalId":331181,"journal":{"name":"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASES55004.2022.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an automatic methodology to accurately predict the performance of Deep Neural Network (DNN) accelerators using abstract descriptions of accelerator architectures and DNNs with a high degree of flexibility. By mapping partially unrolled neural network layers onto accelerator architectures, we automatically construct an analytical performance model, exploiting the dataflow-driven nature of DNNs that allows us to evaluate only a few loop iterations to determine the performance of a whole DNN layer.
正在进行的工作:深度神经网络加速器的超快速而准确的性能预测
我们提出了一种自动方法来准确预测深度神经网络(DNN)加速器的性能,该方法使用了具有高度灵活性的加速器架构和DNN的抽象描述。通过将部分展开的神经网络层映射到加速器架构上,我们自动构建了一个分析性能模型,利用深度神经网络的数据流驱动特性,允许我们仅评估几个循环迭代来确定整个深度神经网络层的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信