Fitting a deformable 3D human body model to depth images using convolutional neural networks

Samuel Zeitvogel, Astrid Laubenheimer
{"title":"Fitting a deformable 3D human body model to depth images using convolutional neural networks","authors":"Samuel Zeitvogel, Astrid Laubenheimer","doi":"10.1109/ISETC.2016.7781122","DOIUrl":null,"url":null,"abstract":"This work combines two existing approaches for 3D human shape completion. A generative statistical model of human shape (SCAPE) and a correspondence algorithm based on convolutional neural networks. The correspondences are used to control a nonrigid iterative closest points (NICP) algorithm which is regularized by a SCAPE model. We expect that this approach will mitigate the initialization problem of NICP and detect correspondence mismatches of a trained feature extractor.","PeriodicalId":238901,"journal":{"name":"2016 12th IEEE International Symposium on Electronics and Telecommunications (ISETC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th IEEE International Symposium on Electronics and Telecommunications (ISETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISETC.2016.7781122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work combines two existing approaches for 3D human shape completion. A generative statistical model of human shape (SCAPE) and a correspondence algorithm based on convolutional neural networks. The correspondences are used to control a nonrigid iterative closest points (NICP) algorithm which is regularized by a SCAPE model. We expect that this approach will mitigate the initialization problem of NICP and detect correspondence mismatches of a trained feature extractor.
使用卷积神经网络拟合可变形的三维人体模型到深度图像
这项工作结合了两种现有的3D人体形状完成方法。一种基于卷积神经网络的人体形状生成统计模型及对应算法。该对应关系用于控制非刚性迭代最近点(NICP)算法,该算法由SCAPE模型正则化。我们期望这种方法可以缓解NICP的初始化问题,并检测训练后的特征提取器的对应不匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信