Notes on Majority Boolean Algebra

A. Chattopadhyay, L. Amarù, Mathias Soeken, P. Gaillardon, G. Micheli
{"title":"Notes on Majority Boolean Algebra","authors":"A. Chattopadhyay, L. Amarù, Mathias Soeken, P. Gaillardon, G. Micheli","doi":"10.1109/ISMVL.2016.21","DOIUrl":null,"url":null,"abstract":"A Majority-Inverter Graph (MIG) is a homogeneous logic network, where each node represents the majority function. Recently, a logic optimization package based on the MIG data structure, with 3-input majority node (M3) has been proposed [2],[30]. It is demonstrated to have efficient area-delay-power results compared to state-of-the-art logic optimization packages. In this paper, the Boolean algebraic transformations based on majority logic, i.e., majority Boolean algebra is studied. In the first part of this paper, we summarize a range of identities for majority Boolean algebra with their corresponding proofs. In the second part, we venture towards heterogeneous logic network and provide reversible logic mapping of majority nodes.","PeriodicalId":246194,"journal":{"name":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2016.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A Majority-Inverter Graph (MIG) is a homogeneous logic network, where each node represents the majority function. Recently, a logic optimization package based on the MIG data structure, with 3-input majority node (M3) has been proposed [2],[30]. It is demonstrated to have efficient area-delay-power results compared to state-of-the-art logic optimization packages. In this paper, the Boolean algebraic transformations based on majority logic, i.e., majority Boolean algebra is studied. In the first part of this paper, we summarize a range of identities for majority Boolean algebra with their corresponding proofs. In the second part, we venture towards heterogeneous logic network and provide reversible logic mapping of majority nodes.
多数布尔代数注释
多数-逆变图(MIG)是一个同质逻辑网络,其中每个节点代表多数函数。最近,有人提出了一种基于MIG数据结构,具有3输入多数节点(M3)的逻辑优化包[2],[30]。与最先进的逻辑优化封装相比,它被证明具有高效的区域延迟功率结果。本文研究了基于多数逻辑的布尔代数变换,即多数布尔代数。在本文的第一部分,我们总结了多数布尔代数的一系列恒等式及其相应的证明。在第二部分中,我们探索了异构逻辑网络,并提供了大多数节点的可逆逻辑映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信