Merging SenticNet and WordNet-Affect emotion lists for sentiment analysis

Soujanya Poria, Alexander Gelbukh, E. Cambria, Peipei Yang, A. Hussain, T. Durrani
{"title":"Merging SenticNet and WordNet-Affect emotion lists for sentiment analysis","authors":"Soujanya Poria, Alexander Gelbukh, E. Cambria, Peipei Yang, A. Hussain, T. Durrani","doi":"10.1109/ICOSP.2012.6491803","DOIUrl":null,"url":null,"abstract":"SenticNet is currently one of the most comprehensive freely available semantic resources for opinion mining. However, it only provides numerical polarity scores, while more detailed sentiment-related information for its concepts is often desirable. Another important resource for opinion mining and sentiment analysis is WordNet-Affect, which in turn lacks quantitative information. We report a work on automatically merging these two resources by assigning emotion labels to more than 2700 concepts.","PeriodicalId":143331,"journal":{"name":"2012 IEEE 11th International Conference on Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 11th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2012.6491803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

SenticNet is currently one of the most comprehensive freely available semantic resources for opinion mining. However, it only provides numerical polarity scores, while more detailed sentiment-related information for its concepts is often desirable. Another important resource for opinion mining and sentiment analysis is WordNet-Affect, which in turn lacks quantitative information. We report a work on automatically merging these two resources by assigning emotion labels to more than 2700 concepts.
合并SenticNet和WordNet-Affect情感列表进行情感分析
SenticNet是目前最全面的免费意见挖掘语义资源之一。然而,它只提供数值极性分数,而更详细的情感相关信息的概念往往是可取的。意见挖掘和情感分析的另一个重要资源是WordNet-Affect,而它又缺乏定量信息。我们报告了通过为2700多个概念分配情感标签来自动合并这两种资源的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信