PHICON: Improving Generalization of Clinical Text De-identification Models via Data Augmentation

Xiang Yue, Shuang Zhou
{"title":"PHICON: Improving Generalization of Clinical Text De-identification Models via Data Augmentation","authors":"Xiang Yue, Shuang Zhou","doi":"10.18653/v1/2020.clinicalnlp-1.23","DOIUrl":null,"url":null,"abstract":"De-identification is the task of identifying protected health information (PHI) in the clinical text. Existing neural de-identification models often fail to generalize to a new dataset. We propose a simple yet effective data augmentation method PHICON to alleviate the generalization issue. PHICON consists of PHI augmentation and Context augmentation, which creates augmented training corpora by replacing PHI entities with named-entities sampled from external sources, and by changing background context with synonym replacement or random word insertion, respectively. Experimental results on the i2b2 2006 and 2014 de-identification challenge datasets show that PHICON can help three selected de-identification models boost F1-score (by at most 8.6%) on cross-dataset test setting. We also discuss how much augmentation to use and how each augmentation method influences the performance.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Natural Language Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.clinicalnlp-1.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

De-identification is the task of identifying protected health information (PHI) in the clinical text. Existing neural de-identification models often fail to generalize to a new dataset. We propose a simple yet effective data augmentation method PHICON to alleviate the generalization issue. PHICON consists of PHI augmentation and Context augmentation, which creates augmented training corpora by replacing PHI entities with named-entities sampled from external sources, and by changing background context with synonym replacement or random word insertion, respectively. Experimental results on the i2b2 2006 and 2014 de-identification challenge datasets show that PHICON can help three selected de-identification models boost F1-score (by at most 8.6%) on cross-dataset test setting. We also discuss how much augmentation to use and how each augmentation method influences the performance.
通过数据增强提高临床文本去识别模型的泛化
去识别是识别临床文本中受保护的健康信息(PHI)的任务。现有的神经去识别模型往往不能泛化到新的数据集。我们提出了一种简单而有效的数据增强方法PHICON来缓解泛化问题。PHICON由PHI增强和上下文增强组成,它们分别通过用从外部源采样的命名实体替换PHI实体,以及用同义词替换或随机单词插入改变背景上下文来创建增强的训练语料库。在i2b2 2006年和2014年去识别挑战数据集上的实验结果表明,PHICON可以帮助三种选择的去识别模型在跨数据集测试设置上提高f1分数(最多提高8.6%)。我们还讨论了要使用多少增强以及每种增强方法如何影响性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信