Eugene Yip, P. Roop, M. Biglari-Abhari, A. Girault
{"title":"Programming and Timing Analysis of Parallel Programs on Multicores","authors":"Eugene Yip, P. Roop, M. Biglari-Abhari, A. Girault","doi":"10.1109/ACSD.2013.19","DOIUrl":null,"url":null,"abstract":"Multicore processors provide better power-performance trade-offs compared to single-core processors. Consequently, they are rapidly penetrating market segments which are both safety critical and hard real-time in nature. However, designing time-predictable embedded applications over multicores remains a considerable challenge. This paper proposes the ForeC language for the deterministic parallel programming of embedded applications on multicores. ForeC extends C with a minimal set of constructs adopted from synchronous languages. To guarantee the worst-case performance of ForeC programs, we offer a very precise reachability-based timing analyzer. To the best of our knowledge, this is the first attempt at the efficient and deterministic parallel programming of multicores using a synchronous C-variant. Experimentation with large multicore programs revealed an average over-estimation of only 2% for the computed worst-case execution times (WCETs). By reducing our representation of the program's state-space, we reduced the analysis time for the largest program (with 43, 695 reachable states) by a factor of 342, to only 7 seconds.","PeriodicalId":166715,"journal":{"name":"2013 13th International Conference on Application of Concurrency to System Design","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th International Conference on Application of Concurrency to System Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSD.2013.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Multicore processors provide better power-performance trade-offs compared to single-core processors. Consequently, they are rapidly penetrating market segments which are both safety critical and hard real-time in nature. However, designing time-predictable embedded applications over multicores remains a considerable challenge. This paper proposes the ForeC language for the deterministic parallel programming of embedded applications on multicores. ForeC extends C with a minimal set of constructs adopted from synchronous languages. To guarantee the worst-case performance of ForeC programs, we offer a very precise reachability-based timing analyzer. To the best of our knowledge, this is the first attempt at the efficient and deterministic parallel programming of multicores using a synchronous C-variant. Experimentation with large multicore programs revealed an average over-estimation of only 2% for the computed worst-case execution times (WCETs). By reducing our representation of the program's state-space, we reduced the analysis time for the largest program (with 43, 695 reachable states) by a factor of 342, to only 7 seconds.