Heuristics and Metaheuristics Approach for Query Optimization Using Genetics and Memetics Algorithm

Julia Kurniasih, Ema Utami, Suwanto Raharjo
{"title":"Heuristics and Metaheuristics Approach for Query Optimization Using Genetics and Memetics Algorithm","authors":"Julia Kurniasih, Ema Utami, Suwanto Raharjo","doi":"10.1109/ICORIS.2019.8874909","DOIUrl":null,"url":null,"abstract":"Query optimization is one of the important things to make the system can be utilized optimally and minimize the execution time. Heuristics and Metaheuristics Approach using Genetic Algorithm (GA) and Memetics Algorithms (MA) can be used as a way to do optimization. Metaheuristics optimization is developing of the heuristics with applying a local search technique. A Memetics Algorithm (MA) are population-based metaheuristics constitute an extension of the traditional Genetics Algorithm (GA) which is combined with a local search technique. This research will perform the analysis of query optimization using GA and the modified MA which is developing by the combination of GA and Tabu Search (TS) applying on crossover operation. The evaluation is based on the comparison of the execution time of the unoptimized, GA and MA query.","PeriodicalId":118443,"journal":{"name":"2019 1st International Conference on Cybernetics and Intelligent System (ICORIS)","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Cybernetics and Intelligent System (ICORIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORIS.2019.8874909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Query optimization is one of the important things to make the system can be utilized optimally and minimize the execution time. Heuristics and Metaheuristics Approach using Genetic Algorithm (GA) and Memetics Algorithms (MA) can be used as a way to do optimization. Metaheuristics optimization is developing of the heuristics with applying a local search technique. A Memetics Algorithm (MA) are population-based metaheuristics constitute an extension of the traditional Genetics Algorithm (GA) which is combined with a local search technique. This research will perform the analysis of query optimization using GA and the modified MA which is developing by the combination of GA and Tabu Search (TS) applying on crossover operation. The evaluation is based on the comparison of the execution time of the unoptimized, GA and MA query.
基于遗传和模因算法的启发式和元启发式查询优化方法
查询优化是使系统得到最优利用和执行时间最小化的重要内容之一。利用遗传算法(GA)和模因算法(MA)的启发式和元启发式方法可以作为一种进行优化的方法。元启发式优化是启发式优化的一种发展,它应用了局部搜索技术。模因算法(Memetics Algorithm, MA)是一种基于群体的元启发式算法,它是传统遗传算法(genetic Algorithm, GA)的扩展,结合了局部搜索技术。本研究将分析遗传算法在查询优化中的应用,以及将遗传算法与禁忌搜索(TS)相结合发展起来的改进遗传算法在交叉操作中的应用。评估是基于对未优化、遗传算法和遗传算法查询的执行时间的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信