T. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, F. Solzbacher
{"title":"Implantable glass optrodes for deep-tissue light delivery","authors":"T. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, F. Solzbacher","doi":"10.1109/OMN.2014.6924573","DOIUrl":null,"url":null,"abstract":"3D needle-type glass waveguide arrays were developed as potentially compact neural interfaces for light delivery in deep-tissue. As much as 90% of input light is transmitted via a single optrode to depths >1mm in tissue. Light emission profiles from the optrode tips into tissue can exhibit beam widths of 70-150 μm and full-angle divergence ranging from 13-40°. These beam characteristics may be able to satisfy a wide range of requirements for targeted illumination in neural stimulation.","PeriodicalId":161791,"journal":{"name":"2014 International Conference on Optical MEMS and Nanophotonics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Optical MEMS and Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2014.6924573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
3D needle-type glass waveguide arrays were developed as potentially compact neural interfaces for light delivery in deep-tissue. As much as 90% of input light is transmitted via a single optrode to depths >1mm in tissue. Light emission profiles from the optrode tips into tissue can exhibit beam widths of 70-150 μm and full-angle divergence ranging from 13-40°. These beam characteristics may be able to satisfy a wide range of requirements for targeted illumination in neural stimulation.