Test for the presence of autocorrelation in the modified Gompertz model used in the fitting the growth of sludge microbes on PEG 600

M. Halmi, M. S. Shukor, N. A. Masdor, N. A. Shamaan, M. Y. Shukor
{"title":"Test for the presence of autocorrelation in the modified Gompertz model used in the fitting the growth of sludge microbes on PEG 600","authors":"M. Halmi, M. S. Shukor, N. A. Masdor, N. A. Shamaan, M. Y. Shukor","doi":"10.54987/jemat.v3i1.238","DOIUrl":null,"url":null,"abstract":"Polyethylene glycols (PEGs), are nephrotoxic, and are employed in numerous industrial sectors. Their biodegradation by microbes could be a potential tool for bioremediation. A lot of bacterial growth reports overlook primary modelling despite the fact that modelling exercises can expose important parameters. Earlier, we have employed several growth models to model the growth of sludge microbes on PEG 600. We found out that the modified Gompertz model via nonlinear regression utilizing the least square method was the most effective model to describe the growth curve. Nonlinear regression using the least square method generally utilizes the assumption that data points do not depend on each other or the value of a data point is not dependent on the value of preceding or proceeding data points or do not exhibit autocorrelation. In this work, the Durbin–Watson statistic to check for the presence of autocorrelation in the growth model was carried out.","PeriodicalId":393012,"journal":{"name":"Journal of Environmental Microbiology and Toxicology","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Microbiology and Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54987/jemat.v3i1.238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Polyethylene glycols (PEGs), are nephrotoxic, and are employed in numerous industrial sectors. Their biodegradation by microbes could be a potential tool for bioremediation. A lot of bacterial growth reports overlook primary modelling despite the fact that modelling exercises can expose important parameters. Earlier, we have employed several growth models to model the growth of sludge microbes on PEG 600. We found out that the modified Gompertz model via nonlinear regression utilizing the least square method was the most effective model to describe the growth curve. Nonlinear regression using the least square method generally utilizes the assumption that data points do not depend on each other or the value of a data point is not dependent on the value of preceding or proceeding data points or do not exhibit autocorrelation. In this work, the Durbin–Watson statistic to check for the presence of autocorrelation in the growth model was carried out.
用于拟合peg600上污泥微生物生长的修正Gompertz模型中存在自相关的检验
聚乙二醇(peg)具有肾毒性,在许多工业部门都有使用。微生物对它们的生物降解可能是一种潜在的生物修复工具。许多细菌生长报告忽略了初步建模,尽管建模练习可以暴露重要的参数。早些时候,我们已经采用了几种生长模型来模拟peg600上污泥微生物的生长。研究发现,利用最小二乘法进行非线性回归的修正Gompertz模型是描述生长曲线最有效的模型。使用最小二乘法的非线性回归通常利用这样的假设:数据点不依赖于彼此,或者数据点的值不依赖于前一个或后一个数据点的值,或者不表现出自相关。在这项工作中,进行了durbin - Watson统计来检查增长模型中是否存在自相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信