A Wide Dynamic Range Sparse FC-DNN Processor with Multi-Cycle Banked SRAM Read and Adaptive Clocking in 16nm FinFET

Sae Kyu Lee, P. Whatmough, Niamh Mulholland, Patrick Hansen, D. Brooks, Gu-Yeon Wei
{"title":"A Wide Dynamic Range Sparse FC-DNN Processor with Multi-Cycle Banked SRAM Read and Adaptive Clocking in 16nm FinFET","authors":"Sae Kyu Lee, P. Whatmough, Niamh Mulholland, Patrick Hansen, D. Brooks, Gu-Yeon Wei","doi":"10.1109/ESSCIRC.2018.8494245","DOIUrl":null,"url":null,"abstract":"Always-on classifiers for sensor data require a very wide operating range to support a variety of real-time workloads and must operate robustly at low supply voltages. We present a 16nm always-on wake-up controller with a fully-connected (FC) Deep Neural Network (DNN) accelerator that operates from 0.4-1 V. Calibration-free automatic voltage/frequency tuning is provided by tracking small non-zero Razor timing-error rates, and a novel timing-error driven sync-free fast adaptive clocking scheme provides resilience to on-chip supply voltage noise. The model access burden of neural networks is relaxed using a multicycle SRAM read, which allows memory voltage to be reduced at iso-throughput. The wide operating range allows for high performance at 1.36GHz, low-power consumption down to 750µW and state-of-the-art raw efficiency at 16-bit precision of 750 GOPS/W dense, or 1.81 TOPS/W sparse.","PeriodicalId":355210,"journal":{"name":"ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2018.8494245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Always-on classifiers for sensor data require a very wide operating range to support a variety of real-time workloads and must operate robustly at low supply voltages. We present a 16nm always-on wake-up controller with a fully-connected (FC) Deep Neural Network (DNN) accelerator that operates from 0.4-1 V. Calibration-free automatic voltage/frequency tuning is provided by tracking small non-zero Razor timing-error rates, and a novel timing-error driven sync-free fast adaptive clocking scheme provides resilience to on-chip supply voltage noise. The model access burden of neural networks is relaxed using a multicycle SRAM read, which allows memory voltage to be reduced at iso-throughput. The wide operating range allows for high performance at 1.36GHz, low-power consumption down to 750µW and state-of-the-art raw efficiency at 16-bit precision of 750 GOPS/W dense, or 1.81 TOPS/W sparse.
一种宽动态范围稀疏FC-DNN处理器,具有多周期银行SRAM读取和16nm FinFET自适应时钟
用于传感器数据的始终在线分类器需要非常宽的工作范围来支持各种实时工作负载,并且必须在低电源电压下可靠地运行。我们提出了一种16nm的常亮唤醒控制器,该控制器具有全连接(FC)深度神经网络(DNN)加速器,工作电压为0.4-1 V。通过跟踪小的非零剃刀时序错误率,提供了无需校准的自动电压/频率调谐,并且一种新的由时序误差驱动的无同步快速自适应时钟方案提供了对片上电源电压噪声的弹性。使用多周期SRAM读取可以减轻神经网络的模型访问负担,从而在等吞吐量下降低存储器电压。宽工作范围可实现1.36GHz的高性能,低功耗至750 μ W,最先进的原始效率为16位精度750 GOPS/W密集,或1.81 TOPS/W稀疏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信