Towards the Defuzzification Procedure in an ANFIS

K. Chernyshov
{"title":"Towards the Defuzzification Procedure in an ANFIS","authors":"K. Chernyshov","doi":"10.1109/SIBCON.2019.8729588","DOIUrl":null,"url":null,"abstract":"The paper pays attention to particularities concerned with the defuzzification procedure in adaptive neural network based fuzzy inference systems. Specifically, the problem of constructing recursive parameter estimation algorithms is considered with regard to their convergence and stability. In the combination with various forms of the quadratic criterion, such an approach enables on to obtain strongly consistent estimation algorithms under essential generality of modeled system description; and the convergence properties are demonstrated in the comparison with conventional algorithms.","PeriodicalId":408993,"journal":{"name":"2019 International Siberian Conference on Control and Communications (SIBCON)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Siberian Conference on Control and Communications (SIBCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON.2019.8729588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper pays attention to particularities concerned with the defuzzification procedure in adaptive neural network based fuzzy inference systems. Specifically, the problem of constructing recursive parameter estimation algorithms is considered with regard to their convergence and stability. In the combination with various forms of the quadratic criterion, such an approach enables on to obtain strongly consistent estimation algorithms under essential generality of modeled system description; and the convergence properties are demonstrated in the comparison with conventional algorithms.
ANFIS的去模糊化程序研究
本文重点研究了基于自适应神经网络的模糊推理系统中去模糊化过程的特殊性。具体来说,考虑了构造递归参数估计算法的收敛性和稳定性问题。该方法与各种形式的二次准则相结合,使我们能够在建模系统描述的本质通用性下获得强一致性估计算法;通过与传统算法的比较,证明了该算法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信