J. Ebert, F. Berlinger, Bahar Haghighat, R. Nagpal
{"title":"A Hybrid PSO Algorithm for Multi-robot Target Search and Decision Awareness","authors":"J. Ebert, F. Berlinger, Bahar Haghighat, R. Nagpal","doi":"10.1109/IROS47612.2022.9982022","DOIUrl":null,"url":null,"abstract":"Groups of robots can be tasked with identifying a location in an environment where a feature cue is past a threshold, then disseminating this information throughout the group – such as identifying a high-enough elevation location to place a communications tower. This is a continuous-cue target search, where multi-robot search algorithms like particle swarm optimization (PSO) can improve search time through parallelization. However, many robots lack global communication in large spaces, and PSO-based algorithms often fail to consider how robots disseminate target knowledge after a single robot locates it. We present a two-stage hybrid algorithm to solve this task: (1) locating a target with a variation of PSO, and (2) moving to maximize target knowledge across the group. We conducted parameter sweep simulations of up to 32 robots in a grid-based grayscale environment. Pre-decision, we find that PSO with a variable velocity update interval improves target localization. In the post-decision phase, we show that dispersion is the fastest strategy to communicate with all other robots. Our algorithm is also competitive with a coverage sweep benchmark, while requiring significantly less inter-individual coordination.","PeriodicalId":431373,"journal":{"name":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"475 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS47612.2022.9982022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Groups of robots can be tasked with identifying a location in an environment where a feature cue is past a threshold, then disseminating this information throughout the group – such as identifying a high-enough elevation location to place a communications tower. This is a continuous-cue target search, where multi-robot search algorithms like particle swarm optimization (PSO) can improve search time through parallelization. However, many robots lack global communication in large spaces, and PSO-based algorithms often fail to consider how robots disseminate target knowledge after a single robot locates it. We present a two-stage hybrid algorithm to solve this task: (1) locating a target with a variation of PSO, and (2) moving to maximize target knowledge across the group. We conducted parameter sweep simulations of up to 32 robots in a grid-based grayscale environment. Pre-decision, we find that PSO with a variable velocity update interval improves target localization. In the post-decision phase, we show that dispersion is the fastest strategy to communicate with all other robots. Our algorithm is also competitive with a coverage sweep benchmark, while requiring significantly less inter-individual coordination.