{"title":"A linearized 1.6–5 GHz low noise amplifier using positive feedback in 65 nm CMOS","authors":"Anders Nejdel, Markus Törmänen, H. Sjöland","doi":"10.1109/NORCHP.2011.6126738","DOIUrl":null,"url":null,"abstract":"A 1.6–5 GHz low noise amplifier has been designed and simulated in a 65 nm CMOS process. The linearity is increased by employing positive feedback using transistors biased in the sub-threshold region. Simulations show that mismatches in the circuit can be neutralized by adjusting the bias point of the feedback transistors. The amplifier has a noise figure below 3 dB, a third order intercept point of +10 dBm, and a voltage gain above 23 dB. In order to obtain a flat gain the amplifier uses a resistive load in combination with current bleeding transistors which give a noise cancelling effect. The circuit consumes 4.9 mA from a 1.5 V supply.","PeriodicalId":108291,"journal":{"name":"2011 NORCHIP","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 NORCHIP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORCHP.2011.6126738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A 1.6–5 GHz low noise amplifier has been designed and simulated in a 65 nm CMOS process. The linearity is increased by employing positive feedback using transistors biased in the sub-threshold region. Simulations show that mismatches in the circuit can be neutralized by adjusting the bias point of the feedback transistors. The amplifier has a noise figure below 3 dB, a third order intercept point of +10 dBm, and a voltage gain above 23 dB. In order to obtain a flat gain the amplifier uses a resistive load in combination with current bleeding transistors which give a noise cancelling effect. The circuit consumes 4.9 mA from a 1.5 V supply.