Entropy-based algorithm for discovering groups with mixed type attributes

E. Hernández, Xiaoou Li, L.E. Rocha
{"title":"Entropy-based algorithm for discovering groups with mixed type attributes","authors":"E. Hernández, Xiaoou Li, L.E. Rocha","doi":"10.1109/ICEEE.2006.251892","DOIUrl":null,"url":null,"abstract":"The majority of the clustering algorithms are focused on datasets with only numeric or categorical attributes. Recently, the problem of clustering mixed data has drawn interest due to the fact that many real life applications have mixed data. In this research work, we propose a clustering algorithm called ACEM that is able to deal with mixed data. This algorithm makes a pre-clustering on the pure categorical data. Then including all mixed data it evaluates the clusters using an entropy-based criterion in order to verify the cluster membership of the data. As result, we obtain a clustering algorithm for mixed data whose main idea is to extend a categorical clustering algorithm introducing an entropy criterion to measure the cluster heterogeneity. We make comparisons with other clustering algorithms on real life datasets to illustrate our algorithm performance","PeriodicalId":125310,"journal":{"name":"2006 3rd International Conference on Electrical and Electronics Engineering","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International Conference on Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2006.251892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The majority of the clustering algorithms are focused on datasets with only numeric or categorical attributes. Recently, the problem of clustering mixed data has drawn interest due to the fact that many real life applications have mixed data. In this research work, we propose a clustering algorithm called ACEM that is able to deal with mixed data. This algorithm makes a pre-clustering on the pure categorical data. Then including all mixed data it evaluates the clusters using an entropy-based criterion in order to verify the cluster membership of the data. As result, we obtain a clustering algorithm for mixed data whose main idea is to extend a categorical clustering algorithm introducing an entropy criterion to measure the cluster heterogeneity. We make comparisons with other clustering algorithms on real life datasets to illustrate our algorithm performance
基于熵的混合类型属性组发现算法
大多数聚类算法只关注具有数字或分类属性的数据集。最近,由于许多实际应用程序都有混合数据,因此混合数据的聚类问题引起了人们的兴趣。在本研究中,我们提出了一种能够处理混合数据的聚类算法ACEM。该算法对纯分类数据进行预聚类。然后包括所有混合数据,它使用基于熵的标准来评估集群,以验证数据的集群成员。因此,我们得到了一种用于混合数据的聚类算法,其主要思想是对分类聚类算法进行扩展,引入熵准则来衡量聚类的异质性。我们在现实生活数据集上与其他聚类算法进行了比较,以说明我们的算法性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信