Terrain Segmentation and Roughness Estimation using RGB Data: Path Planning Application on the CENTAURO Robot

Vivekanandan Suryamurthy, V. S. Raghavan, Arturo Laurenzi, N. Tsagarakis, D. Kanoulas
{"title":"Terrain Segmentation and Roughness Estimation using RGB Data: Path Planning Application on the CENTAURO Robot","authors":"Vivekanandan Suryamurthy, V. S. Raghavan, Arturo Laurenzi, N. Tsagarakis, D. Kanoulas","doi":"10.1109/Humanoids43949.2019.9035009","DOIUrl":null,"url":null,"abstract":"Robots operating in real world environments require a high-level perceptual understanding of the chief physical properties of the terrain they are traversing. In unknown environments, roughness is one such important terrain property that could play a key role in devising robot control/planning strategies. In this paper, we present a fast method for predicting pixel-wise labels of terrain (stone, sand, road/sidewalk, wood, grass, metal) and roughness estimation, using a single RGB-based deep neural network. Real world RGB images are used to experimentally validate the presented approach. Furthermore, we demonstrate an application of our proposed method on the centaur-like wheeled-legged robot CENTAURO, by integrating it with a navigation planner that is capable of re-configuring the leg joints to modify the robot footprint polygon for stability purposes or for safe traversal among obstacles.","PeriodicalId":404758,"journal":{"name":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids43949.2019.9035009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Robots operating in real world environments require a high-level perceptual understanding of the chief physical properties of the terrain they are traversing. In unknown environments, roughness is one such important terrain property that could play a key role in devising robot control/planning strategies. In this paper, we present a fast method for predicting pixel-wise labels of terrain (stone, sand, road/sidewalk, wood, grass, metal) and roughness estimation, using a single RGB-based deep neural network. Real world RGB images are used to experimentally validate the presented approach. Furthermore, we demonstrate an application of our proposed method on the centaur-like wheeled-legged robot CENTAURO, by integrating it with a navigation planner that is capable of re-configuring the leg joints to modify the robot footprint polygon for stability purposes or for safe traversal among obstacles.
基于RGB数据的地形分割与粗糙度估计:路径规划在CENTAURO机器人上的应用
在现实世界环境中工作的机器人需要对它们所穿越的地形的主要物理特性有高度的感知理解。在未知环境中,粗糙度是一个重要的地形属性,可以在设计机器人控制/规划策略中发挥关键作用。在本文中,我们提出了一种快速预测地形(石头,沙子,道路/人行道,木材,草,金属)像素标记和粗糙度估计的方法,使用单个基于rgb的深度神经网络。真实世界的RGB图像被用来实验验证所提出的方法。此外,我们展示了我们提出的方法在半人马座式轮式腿机器人CENTAURO上的应用,通过将其与导航规划器相结合,该规划器能够重新配置腿部关节来修改机器人的足迹多边形,以达到稳定的目的或安全穿越障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信