Two dimensional high-resolution spectral estimator with singular covariance matrix

K. Zhang, Zhigang Su, R. Wu
{"title":"Two dimensional high-resolution spectral estimator with singular covariance matrix","authors":"K. Zhang, Zhigang Su, R. Wu","doi":"10.1109/ISPACS.2007.4445878","DOIUrl":null,"url":null,"abstract":"Employing singular covariance matrix, spectral estimation methods can give high resolution results. In this paper, the original one-dimensional (1-D) spectral estimation method, which is based on singular covariance matrix, is extended to the case of two-dimensional (2-D). With the few snapshots, forward-backward method is utilized to calculate the sample covariance matrix. Owing to the better estimate of the sample covariance matrix, the new method can give good performance on the estimation accuracy of the 2-D spectrum. Simulation results show that the proposed method is superior to other similar methods for spectral estimation.","PeriodicalId":220276,"journal":{"name":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2007.4445878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Employing singular covariance matrix, spectral estimation methods can give high resolution results. In this paper, the original one-dimensional (1-D) spectral estimation method, which is based on singular covariance matrix, is extended to the case of two-dimensional (2-D). With the few snapshots, forward-backward method is utilized to calculate the sample covariance matrix. Owing to the better estimate of the sample covariance matrix, the new method can give good performance on the estimation accuracy of the 2-D spectrum. Simulation results show that the proposed method is superior to other similar methods for spectral estimation.
具有奇异协方差矩阵的二维高分辨率谱估计
采用奇异协方差矩阵的光谱估计方法可以得到高分辨率的结果。本文将原有的基于奇异协方差矩阵的一维谱估计方法推广到二维谱估计中。在快照较少的情况下,采用正向后法计算样本协方差矩阵。由于对样本协方差矩阵的估计较好,新方法在二维谱的估计精度上有较好的表现。仿真结果表明,该方法优于其他类似的谱估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信