An efficient solution for compositional design problems by Multi-stage Genetic Algorithm

Masakazu Suzuki, Y. Hiyama, H. Yamada
{"title":"An efficient solution for compositional design problems by Multi-stage Genetic Algorithm","authors":"Masakazu Suzuki, Y. Hiyama, H. Yamada","doi":"10.1109/ISIC.2007.4450958","DOIUrl":null,"url":null,"abstract":"The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional design problems. The problem with complicated constraints is formulated as a set of local subproblems with simple constraints and a supervising problem. Every subproblem is solved by GA to generate a set of suboptimal solutions. And in the supervising problem, the elements of each set are optimally combined by GA to yield the optimal solution for the original problem. The method is a learning method where the empirical knowledge obtained by solving the problem is effectively utilized to solve similar problems efficiently. Extended knapsack problems are solved to demonstrate the proposed method, and the efficiency of the method is shown. In addition, the method is successfully applied to optimal realization of cooperative robot soccer behaviors.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional design problems. The problem with complicated constraints is formulated as a set of local subproblems with simple constraints and a supervising problem. Every subproblem is solved by GA to generate a set of suboptimal solutions. And in the supervising problem, the elements of each set are optimally combined by GA to yield the optimal solution for the original problem. The method is a learning method where the empirical knowledge obtained by solving the problem is effectively utilized to solve similar problems efficiently. Extended knapsack problems are solved to demonstrate the proposed method, and the efficiency of the method is shown. In addition, the method is successfully applied to optimal realization of cooperative robot soccer behaviors.
多阶段遗传算法在组合设计问题中的有效求解
引入多阶段遗传算法求解一类组合设计问题。将具有复杂约束的问题表述为一组具有简单约束的局部子问题和一个监督问题。每个子问题通过遗传算法求解,生成一组次优解。在监督问题中,通过遗传算法对各集合的元素进行最优组合,得到原问题的最优解。该方法是一种学习方法,有效地利用解决问题所获得的经验知识,高效地解决类似问题。通过对扩展背包问题的求解,验证了该方法的有效性。此外,该方法还成功地应用于协作机器人足球行为的优化实现中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信