Analisis Simulasi Solusi Numerik Model Lotka-Volterra dengan Metode Runge-Kutta-Fehlberg (Studi Kasus Populasi Musang Luwak (Paradoxurus hermaphroditus) dan Ayam Hutan Merah (Gallus gallus) di Taman Nasional Alas Purwo)

R. N. Darmawan, R. M. Hariastuti
{"title":"Analisis Simulasi Solusi Numerik Model Lotka-Volterra dengan Metode Runge-Kutta-Fehlberg (Studi Kasus Populasi Musang Luwak (Paradoxurus hermaphroditus) dan Ayam Hutan Merah (Gallus gallus) di Taman Nasional Alas Purwo)","authors":"R. N. Darmawan, R. M. Hariastuti","doi":"10.15575/kubik.v3i2.4112","DOIUrl":null,"url":null,"abstract":"Model mangsa-pemangsa, atau biasa disebut dengan model Lotka-Volterra adalah suatu model dalam bentuk sistem persamaan diferensial biasa non-linier yang menggambarkan interaksi antara dua makhluk hidup yang berhubungan dalam bentuk predasi. Sehingga untuk menyelesaikan model tersebut harus menggunakan metode numerik yaitu metode Runge-Kutta-Fehlberg (RKF45), dikarenakan model tersebut berupa sistem persamaan diferensial non-linier yang mana sulit untuk menentukan solusi analitik, solusi dari sistem persamaan diferensial tersebut adalah berupa profil interaksi antara antara kedua spesies yang saling memangsa dalam suatu ekosistem. Dalam artikel ini, peniliti mengambil studi kasus populasi Musang Luwak (Paradoxurus hermaphroditus) dan Ayam Hutan Merah (Gallus gallus) yang hidup di Taman Nasional Alas Purwo, yang mana keduanya memiliki hubungan predasi. Hasil dari artikel ini adalah profil simulasi model Lotka-Volterra antara kedua spesies dengan melakukan beberapa variasi parameter-parameter sehingga hasil akhirnya adalah suatu profil yang dapat menggambarakan kondisi yang memungkinkan kepunahan antara masing-masing spesies.","PeriodicalId":300313,"journal":{"name":"Kubik: Jurnal Publikasi Ilmiah Matematika","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kubik: Jurnal Publikasi Ilmiah Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15575/kubik.v3i2.4112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Model mangsa-pemangsa, atau biasa disebut dengan model Lotka-Volterra adalah suatu model dalam bentuk sistem persamaan diferensial biasa non-linier yang menggambarkan interaksi antara dua makhluk hidup yang berhubungan dalam bentuk predasi. Sehingga untuk menyelesaikan model tersebut harus menggunakan metode numerik yaitu metode Runge-Kutta-Fehlberg (RKF45), dikarenakan model tersebut berupa sistem persamaan diferensial non-linier yang mana sulit untuk menentukan solusi analitik, solusi dari sistem persamaan diferensial tersebut adalah berupa profil interaksi antara antara kedua spesies yang saling memangsa dalam suatu ekosistem. Dalam artikel ini, peniliti mengambil studi kasus populasi Musang Luwak (Paradoxurus hermaphroditus) dan Ayam Hutan Merah (Gallus gallus) yang hidup di Taman Nasional Alas Purwo, yang mana keduanya memiliki hubungan predasi. Hasil dari artikel ini adalah profil simulasi model Lotka-Volterra antara kedua spesies dengan melakukan beberapa variasi parameter-parameter sehingga hasil akhirnya adalah suatu profil yang dapat menggambarakan kondisi yang memungkinkan kepunahan antara masing-masing spesies.
用Runge-Kutta-Fehlberg方法(Luwak麝香猫(Paradoxurus hermaphroditus)和红林鸡(Gallus Gallus)在Purwo国家公园进行的数字解决方案分析。
捕食者模型,或通常被称为lotons - volterra模型,是一个典型的非线性微分方程系统的模型,它描述了两个相互关联的以捕食的形式相互作用。因此,要完成这个模型,必须使用数值方法Runge-Kutta-Fehlberg方法(RKF45),因为它是一种非线性微分方程系统,很难定义解析解决方案,而微分方程系统的解决方案是两种在生态系统中相互捕食的物种之间的相互作用配置。在这篇文章中,彭尼提研究了生活在Purwo国家公园的麝香猫(Paradoxurus hermaphroditus)和红杉鸡(Gallus Gallus)种群的案例。这篇文章的结果是对这两种物种之间的彩票模型进行模拟,通过对参数进行多种不同的变化,最终的结果是一种概况,可以描述允许每个物种灭绝的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信