{"title":"Enhancing physical layer security through beamforming and noise injection","authors":"Hao Wang, Li Chen, Weidong Wang","doi":"10.1109/WCSP.2014.6992129","DOIUrl":null,"url":null,"abstract":"In this paper, we evaluate how much beamforming and noise injection can improve physical layer security by deriving the probability of non-zero secrecy capacity and the secrecy outage probability. Our model is a typical wiretap channel model, composed of three participants - the transmitter Alice, the legitimate receiver Bob and the eavesdropper Eve. A typical cellular scenario is considered where Alice has multiple antennas while Bob and Eve each have only one antenna (MISOSE). Beamforming and noise injection at Alice are applied to achieve a higher instantaneous signal-to-noise ratio (SNR) at Bob and a lower SNR at Eve. The probability density functions (pdf) of Bob and Eve's SNR are figured out in both noise-injection condition and injection-free condition, and we derive the closed-form expressions for the probability of non-zero secrecy capacity and the secrecy outage probability. Numerical analysis is also addressed using the two probabilities introduced above.","PeriodicalId":412971,"journal":{"name":"2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2014.6992129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we evaluate how much beamforming and noise injection can improve physical layer security by deriving the probability of non-zero secrecy capacity and the secrecy outage probability. Our model is a typical wiretap channel model, composed of three participants - the transmitter Alice, the legitimate receiver Bob and the eavesdropper Eve. A typical cellular scenario is considered where Alice has multiple antennas while Bob and Eve each have only one antenna (MISOSE). Beamforming and noise injection at Alice are applied to achieve a higher instantaneous signal-to-noise ratio (SNR) at Bob and a lower SNR at Eve. The probability density functions (pdf) of Bob and Eve's SNR are figured out in both noise-injection condition and injection-free condition, and we derive the closed-form expressions for the probability of non-zero secrecy capacity and the secrecy outage probability. Numerical analysis is also addressed using the two probabilities introduced above.