SubTree Augmented Naïve Bayesian classifier based on the fuzzy equivalence partition of attribute variables

Hong-mei Chen, Li-Zhen Wang, Wei-yi Liu, Haoyao Chen
{"title":"SubTree Augmented Naïve Bayesian classifier based on the fuzzy equivalence partition of attribute variables","authors":"Hong-mei Chen, Li-Zhen Wang, Wei-yi Liu, Haoyao Chen","doi":"10.1109/ICINFA.2009.5205139","DOIUrl":null,"url":null,"abstract":"To make the structure of attribute variables in Naïve Bayesian classifier (NB) or Tree Augmented Naïve Bayesian classifier (TAN) more flexible and improve the accuracy of classification, a new Bayesian classifier called SubTree Augmented Naïve Bayesian classifier (STAN) is proposed in this paper. It adopts the fuzzy equivalence partition approach to partition attribute variables into several subsets and admits the structure of attribute variables to be several subtrees. NB and TAN can be easily simulated by STAN as the threshold changes. Experiments with UCI datasets and synthetic datasets demonstrate STAN is effective and efficient.","PeriodicalId":223425,"journal":{"name":"2009 International Conference on Information and Automation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2009.5205139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To make the structure of attribute variables in Naïve Bayesian classifier (NB) or Tree Augmented Naïve Bayesian classifier (TAN) more flexible and improve the accuracy of classification, a new Bayesian classifier called SubTree Augmented Naïve Bayesian classifier (STAN) is proposed in this paper. It adopts the fuzzy equivalence partition approach to partition attribute variables into several subsets and admits the structure of attribute variables to be several subtrees. NB and TAN can be easily simulated by STAN as the threshold changes. Experiments with UCI datasets and synthetic datasets demonstrate STAN is effective and efficient.
基于属性变量模糊等价划分的SubTree Augmented Naïve贝叶斯分类器
为了使Naïve贝叶斯分类器(NB)或树增广Naïve贝叶斯分类器(TAN)的属性变量结构更加灵活,提高分类精度,本文提出了一种新的贝叶斯分类器SubTree Augmented Naïve贝叶斯分类器(STAN)。该方法采用模糊等价划分方法将属性变量划分为若干子集,并允许属性变量的结构为若干子树。随着阈值的变化,NB和TAN可以很容易地被STAN模拟。在UCI数据集和合成数据集上的实验表明,STAN是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信