{"title":"Integrated Synthesis of Linear Nearest Neighbor Ancilla-Free MCT Circuits","authors":"M. Rahman, G. Dueck, A. Chattopadhyay, R. Wille","doi":"10.1109/ISMVL.2016.54","DOIUrl":null,"url":null,"abstract":"The rapid advances of quantum technologies are opening up new challenges, of which, protecting quantum states from errors is a major one. Among quantum error correction schemes, the surface code is emerging as a natural choice with high-fidelity quantum gates reported for experimental platforms. Surface codes also necessitate the quantum gates to be formed with strict nearest neighbour coupling. State-of-the-art-reversible logic synthesis techniques for quantum circuit implementation do not ensure the logic gates to be formed in a nearest neighbor fashion, and this is handled as a post processing optimization by the insertion of swap gates. In this paper, we propose, for the first time, the inclusion of nearest neighbourhood criteria in a widely used ancilla free reversible logic synthesis method. Experimental results show that this method easily outperforms the earlier two step techniques in terms of gate count without any runtime overhead.","PeriodicalId":246194,"journal":{"name":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2016.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
The rapid advances of quantum technologies are opening up new challenges, of which, protecting quantum states from errors is a major one. Among quantum error correction schemes, the surface code is emerging as a natural choice with high-fidelity quantum gates reported for experimental platforms. Surface codes also necessitate the quantum gates to be formed with strict nearest neighbour coupling. State-of-the-art-reversible logic synthesis techniques for quantum circuit implementation do not ensure the logic gates to be formed in a nearest neighbor fashion, and this is handled as a post processing optimization by the insertion of swap gates. In this paper, we propose, for the first time, the inclusion of nearest neighbourhood criteria in a widely used ancilla free reversible logic synthesis method. Experimental results show that this method easily outperforms the earlier two step techniques in terms of gate count without any runtime overhead.