{"title":"Collisions of Stable Spatio-Temporal Solitons","authors":"R. Mcleod, K. Wagner, S. Blair","doi":"10.1364/nlgw.1995.nfa9","DOIUrl":null,"url":null,"abstract":"Silberberg1 has recently shown that, in a homogeneous nonlinear Kerr material exhibiting anomalous group-velocity dispersion (AGVD), the propagation of the slowly-varying envelope of the electric-field can be described by a 3+1D nonlinear Schrodinger equation (NLSE): which is written in a group-velocity coordinate frame. The AGVD has been used to make temporal dispersion isomorphic to spatial diffraction which in turn gives rise to the possibility of simultaneous two-dimensional, radially symmetric self-focusing and temporal pulse compression resulting in a 3D soliton or “light-bullet”. This light-bullet is fully confined by nonlinear effects alone but exhibits the behavior of both temporal solitons in fibers and spatial solitons in slab waveguides.","PeriodicalId":262564,"journal":{"name":"Nonlinear Guided Waves and Their Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Guided Waves and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/nlgw.1995.nfa9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Silberberg1 has recently shown that, in a homogeneous nonlinear Kerr material exhibiting anomalous group-velocity dispersion (AGVD), the propagation of the slowly-varying envelope of the electric-field can be described by a 3+1D nonlinear Schrodinger equation (NLSE): which is written in a group-velocity coordinate frame. The AGVD has been used to make temporal dispersion isomorphic to spatial diffraction which in turn gives rise to the possibility of simultaneous two-dimensional, radially symmetric self-focusing and temporal pulse compression resulting in a 3D soliton or “light-bullet”. This light-bullet is fully confined by nonlinear effects alone but exhibits the behavior of both temporal solitons in fibers and spatial solitons in slab waveguides.