{"title":"Sensing mechanisms of high temperature silicon carbide field-effect devices","authors":"P. Tobias, B. Golding, R. Ghosh","doi":"10.1109/SENSOR.2003.1215342","DOIUrl":null,"url":null,"abstract":"Metal-insulator-silicon carbide devices have been used for gas sensing in automotive exhausts, because the large band gap of SiC allows high temperature operation up to 1200 K in chemically reactive environments. The sensor response to hydrogen containing species is due to two mechanisms whose effects are difficult to distinguish: the chemical modification of the barrier height at the metal-insulator interface and the creation/passivation of charged states at the insulator-silicon carbide interface. We describe an experimental technique combining in-situ photoemission and in-situ capacitance-voltage spectroscopy to separate the contribution of each phenomenon. Our experiment elucidates the sensing mechanism of high temperature SiC based gas sensors.","PeriodicalId":196104,"journal":{"name":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2003.1215342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Metal-insulator-silicon carbide devices have been used for gas sensing in automotive exhausts, because the large band gap of SiC allows high temperature operation up to 1200 K in chemically reactive environments. The sensor response to hydrogen containing species is due to two mechanisms whose effects are difficult to distinguish: the chemical modification of the barrier height at the metal-insulator interface and the creation/passivation of charged states at the insulator-silicon carbide interface. We describe an experimental technique combining in-situ photoemission and in-situ capacitance-voltage spectroscopy to separate the contribution of each phenomenon. Our experiment elucidates the sensing mechanism of high temperature SiC based gas sensors.