A BERT-Based Report Classification for Semiconductor Failure Analysis

Corinna Grabner, Anna Safont-Andreu, C. Burmer, Konstantin Schekotihin
{"title":"A BERT-Based Report Classification for Semiconductor Failure Analysis","authors":"Corinna Grabner, Anna Safont-Andreu, C. Burmer, Konstantin Schekotihin","doi":"10.31399/asm.cp.istfa2022p0028","DOIUrl":null,"url":null,"abstract":"Failure Analysis (FA) is a complex activity that requires careful and complete documentation of all findings and conclusions to preserve knowledge acquired by engineers in this process. Modern FA systems store this data in text or image formats and organize it in databases, file shares, wikis, or other human-readable forms. Given a large volume of generated FA data, navigating it or searching for particular information is hard since machines cannot process the stored knowledge automatically and require much interaction with experts. In this paper, we investigate applications of modern Natural Language Processing (NLP) approaches to the classification of FA texts with respect to electrical and/or physical failures they describe. In particular, we study the efficiency of pretrained Language Models (LM) in the semiconductors domain for text classification with deep neural networks. Evaluation results of LMs show that their vocabulary is not suitable for FA applications, and the best classification accuracy of appr. 60% and 70% for physical and electrical failures, respectively, can only be reached with fine-tuning techniques.","PeriodicalId":417175,"journal":{"name":"International Symposium for Testing and Failure Analysis","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2022p0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Failure Analysis (FA) is a complex activity that requires careful and complete documentation of all findings and conclusions to preserve knowledge acquired by engineers in this process. Modern FA systems store this data in text or image formats and organize it in databases, file shares, wikis, or other human-readable forms. Given a large volume of generated FA data, navigating it or searching for particular information is hard since machines cannot process the stored knowledge automatically and require much interaction with experts. In this paper, we investigate applications of modern Natural Language Processing (NLP) approaches to the classification of FA texts with respect to electrical and/or physical failures they describe. In particular, we study the efficiency of pretrained Language Models (LM) in the semiconductors domain for text classification with deep neural networks. Evaluation results of LMs show that their vocabulary is not suitable for FA applications, and the best classification accuracy of appr. 60% and 70% for physical and electrical failures, respectively, can only be reached with fine-tuning techniques.
基于bert的半导体失效分析报告分类
故障分析(FA)是一项复杂的活动,需要仔细和完整地记录所有发现和结论,以保存工程师在此过程中获得的知识。现代FA系统以文本或图像格式存储这些数据,并将其组织在数据库、文件共享、wiki或其他人类可读的形式中。由于机器不能自动处理存储的知识,并且需要与专家进行大量的交互,因此在生成的大量FA数据中导航或搜索特定信息是困难的。在本文中,我们研究了现代自然语言处理(NLP)方法在FA文本分类中的应用,这些文本涉及到它们所描述的电气和/或物理故障。特别地,我们研究了半导体领域的预训练语言模型(LM)在深度神经网络文本分类中的效率。对LMs的评价结果表明,LMs的词汇量不适合FA的应用,而apr的分类精度最高。物理和电气故障分别达到60%和70%,只有通过微调技术才能达到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信