Patrick Mesmer, Michael Neubauer, A. Lechler, A. Verl
{"title":"Challenges of Linearization-based Control of Industrial Robots with Cycloidal Drives","authors":"Patrick Mesmer, Michael Neubauer, A. Lechler, A. Verl","doi":"10.1109/ICM46511.2021.9385627","DOIUrl":null,"url":null,"abstract":"Most industrial robots are still controlled with motor-side feedback. To increase the accuracy of industrial robots, controllers with joint-side feedback and explicit consideration of the joint elasticity, such as linearization-based controllers, are needed. The key issue for the performance of linearization-based controllers is a high-fidelity model. Today, the drivetrains installed in the joints of industrial robots of the high payload class usually consist of a permanent magnet synchronous machine and a cycloidal drive. Such robot joints are highly nonlinear due to effects like hysteresis, torque ripples and friction. Therefore, the drivetrain dynamics are crucial for the experimental performance of linearization-based controllers for industrial robots. This paper identifies the challenges in linearization-based control of industrial robots with such a drivetrain configuration based on experimental results on a KUKA KR-210-2. Using an exemplary approach, it is shown that a linearization-based controller does not provide the theoretical performance due to needed model simplifications. For this purpose, simulation and experimental results are compared to a linear robot controller with motor-side feedback. These results indicate why such controllers are still a valid alternative for the practical application of similar industrial robots.","PeriodicalId":373423,"journal":{"name":"2021 IEEE International Conference on Mechatronics (ICM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM46511.2021.9385627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Most industrial robots are still controlled with motor-side feedback. To increase the accuracy of industrial robots, controllers with joint-side feedback and explicit consideration of the joint elasticity, such as linearization-based controllers, are needed. The key issue for the performance of linearization-based controllers is a high-fidelity model. Today, the drivetrains installed in the joints of industrial robots of the high payload class usually consist of a permanent magnet synchronous machine and a cycloidal drive. Such robot joints are highly nonlinear due to effects like hysteresis, torque ripples and friction. Therefore, the drivetrain dynamics are crucial for the experimental performance of linearization-based controllers for industrial robots. This paper identifies the challenges in linearization-based control of industrial robots with such a drivetrain configuration based on experimental results on a KUKA KR-210-2. Using an exemplary approach, it is shown that a linearization-based controller does not provide the theoretical performance due to needed model simplifications. For this purpose, simulation and experimental results are compared to a linear robot controller with motor-side feedback. These results indicate why such controllers are still a valid alternative for the practical application of similar industrial robots.