Toward Efficient Aspect Mining for Linux

Danfeng Zhang, Yao Guo, Yue Wang, Xiangqun Chen
{"title":"Toward Efficient Aspect Mining for Linux","authors":"Danfeng Zhang, Yao Guo, Yue Wang, Xiangqun Chen","doi":"10.1109/APSEC.2007.95","DOIUrl":null,"url":null,"abstract":"Code implementing a crosscutting concern spreads over many parts of the Linux code. Identifying these code automatically can benefit both the maintainability and evolvability of Linux. In this paper, we present a case study on how to identify aspects in the Linux code. First, we analyze four typical crosscutting concerns in Linux and show how to apply existing mining approaches to identify these concerns. We then propose three new mining approaches and compare their performance with the original methods. Experiments show that the proposed mining approaches can find these concerns more efficiently in Linux.","PeriodicalId":273688,"journal":{"name":"14th Asia-Pacific Software Engineering Conference (APSEC'07)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th Asia-Pacific Software Engineering Conference (APSEC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC.2007.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Code implementing a crosscutting concern spreads over many parts of the Linux code. Identifying these code automatically can benefit both the maintainability and evolvability of Linux. In this paper, we present a case study on how to identify aspects in the Linux code. First, we analyze four typical crosscutting concerns in Linux and show how to apply existing mining approaches to identify these concerns. We then propose three new mining approaches and compare their performance with the original methods. Experiments show that the proposed mining approaches can find these concerns more efficiently in Linux.
面向Linux的高效方面挖掘
实现横切关注点的代码分布在Linux代码的许多部分。自动识别这些代码有利于Linux的可维护性和可发展性。在本文中,我们提出了一个关于如何识别Linux代码中的方面的案例研究。首先,我们分析了Linux中的四个典型横切关注点,并展示了如何应用现有的挖掘方法来识别这些关注点。然后,我们提出了三种新的挖掘方法,并将它们的性能与原始方法进行了比较。实验表明,所提出的挖掘方法可以在Linux环境下更有效地找到这些关注点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信