{"title":"Quantitative analysis of chemoattractant gradient induced cell migration velocity and automatic controller design","authors":"Hao Yang, Xue Gou, H. Chu, Yong Wang, Dong Sun","doi":"10.1109/NANO.2014.6968077","DOIUrl":null,"url":null,"abstract":"Cell chemotaxis is a phenomenon in which cells spatially sense the chemoattractant gradient in the extra-environment and move along this gradient. This paper illustrates the relationship between the chemoattractant gradient and the cell velocity quantitatively, using a single-cell motility assay method based on optically manipulated microsources. A case study was performed on leukemia cancer cells. Quantitative study indicates that the cell is sensitive to the gradient, and can move faster under a high gradient. Based on the quantitative relationship, a control strategy was proposed to realize automatically induced cell migration. The simulation results demonstrate the effectiveness and robustness of the proposed method.","PeriodicalId":367660,"journal":{"name":"14th IEEE International Conference on Nanotechnology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2014.6968077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cell chemotaxis is a phenomenon in which cells spatially sense the chemoattractant gradient in the extra-environment and move along this gradient. This paper illustrates the relationship between the chemoattractant gradient and the cell velocity quantitatively, using a single-cell motility assay method based on optically manipulated microsources. A case study was performed on leukemia cancer cells. Quantitative study indicates that the cell is sensitive to the gradient, and can move faster under a high gradient. Based on the quantitative relationship, a control strategy was proposed to realize automatically induced cell migration. The simulation results demonstrate the effectiveness and robustness of the proposed method.