Object Mobility classification based Visual SLAM in Dynamic Environments

Huayan Zhang, Tianwei Zhang, Yang Li, Lei Zhang, Wanpeng Wang
{"title":"Object Mobility classification based Visual SLAM in Dynamic Environments","authors":"Huayan Zhang, Tianwei Zhang, Yang Li, Lei Zhang, Wanpeng Wang","doi":"10.1109/UR49135.2020.9144979","DOIUrl":null,"url":null,"abstract":"Most of the existed visual odometry methods cannot work in dynamic environments since the dynamic objects lead to wrong uncertain feature associations. In this paper, we involved a learning-based object classification front end to recognize and remove the dynamic object, and thereby ensure our ego-motion estimator’s robustness in high dynamic environments. Moreover, we newly classify the environmental objects into static, movable and dynamic three classes. This processing not only enables the ego-motion estimation in the dynamic environment but also leads to clean and complete map-ping results. The experimental results indicate that the proposed method outperformed the other state-of-the-art SLAM solutions in both dynamic and static indoor environments.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"321 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the existed visual odometry methods cannot work in dynamic environments since the dynamic objects lead to wrong uncertain feature associations. In this paper, we involved a learning-based object classification front end to recognize and remove the dynamic object, and thereby ensure our ego-motion estimator’s robustness in high dynamic environments. Moreover, we newly classify the environmental objects into static, movable and dynamic three classes. This processing not only enables the ego-motion estimation in the dynamic environment but also leads to clean and complete map-ping results. The experimental results indicate that the proposed method outperformed the other state-of-the-art SLAM solutions in both dynamic and static indoor environments.
动态环境下基于视觉SLAM的目标移动分类
由于动态目标会导致错误的不确定特征关联,现有的视觉里程测量方法大多不能在动态环境下工作。在本文中,我们引入了一个基于学习的目标分类前端来识别和去除动态目标,从而保证了我们的自运动估计器在高动态环境中的鲁棒性。在此基础上,将环境对象重新划分为静态、活动和动态三类。这种处理不仅可以实现动态环境下的自运动估计,而且可以得到干净完整的映射结果。实验结果表明,该方法在动态和静态室内环境下均优于其他最先进的SLAM解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信