Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies

S. Calinon, I. Sardellitti, D. Caldwell
{"title":"Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies","authors":"S. Calinon, I. Sardellitti, D. Caldwell","doi":"10.1109/IROS.2010.5648931","DOIUrl":null,"url":null,"abstract":"We propose a control strategy for a robotic manipulator operating in an unstructured environment while interacting with a human operator. The proposed system takes into account the important characteristics of the task and the redundancy of the robot to determine a controller that is safe for the user. The constraints of the task are first extracted using several examples of the skill demonstrated to the robot through kinesthetic teaching. An active control strategy based on task-space control with variable stiffness is proposed, and combined with a safety strategy for tasks requiring humans to move in the vicinity of robots. A risk indicator for human-robot collision is defined, which modulates a repulsive force distorting the spatial and temporal characteristics of the movement according to the task constraints. We illustrate the approach with two human-robot interaction experiments, where the user teaches the robot first how to move a tray, and then shows it how to iron a napkin.","PeriodicalId":420658,"journal":{"name":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"162","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2010.5648931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 162

Abstract

We propose a control strategy for a robotic manipulator operating in an unstructured environment while interacting with a human operator. The proposed system takes into account the important characteristics of the task and the redundancy of the robot to determine a controller that is safe for the user. The constraints of the task are first extracted using several examples of the skill demonstrated to the robot through kinesthetic teaching. An active control strategy based on task-space control with variable stiffness is proposed, and combined with a safety strategy for tasks requiring humans to move in the vicinity of robots. A risk indicator for human-robot collision is defined, which modulates a repulsive force distorting the spatial and temporal characteristics of the movement according to the task constraints. We illustrate the approach with two human-robot interaction experiments, where the user teaches the robot first how to move a tray, and then shows it how to iron a napkin.
利用任务和机器人冗余的基于学习的安全人机交互控制策略
我们提出了一种在非结构化环境中与人类操作者交互操作的机器人操纵器控制策略。该系统考虑了任务的重要特征和机器人的冗余度,以确定对用户安全的控制器。首先通过动觉教学向机器人展示技能的几个例子来提取任务的约束条件。提出了一种基于变刚度任务空间控制的主动控制策略,并将其与需要人类在机器人附近移动的任务安全策略相结合。定义了人-机器人碰撞风险指标,该指标根据任务约束调节一个扭曲运动时空特征的斥力。我们用两个人机交互实验来说明这种方法,用户首先教机器人如何移动托盘,然后向它展示如何熨烫餐巾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信