{"title":"Boosting up performance of power SiGe HBTs using advanced layout concept","authors":"Guogong Wang, Chao Qin, N. Jiang, Z. Ma","doi":"10.1109/SMIC.2004.1398186","DOIUrl":null,"url":null,"abstract":"We report an advanced power device layout structure, namely heat transfer counterbalanced (HTCB) layout, for designing power SiGe HBTs. It is shown that this new power device structure can substantially reduce adverse thermal effects of power devices without using ballasting resistors. Significantly improved power performances have been achieved from SiGe power HBTs employing the new layout concept.","PeriodicalId":288561,"journal":{"name":"Digest of Papers. 2004 Topical Meeting onSilicon Monolithic Integrated Circuits in RF Systems, 2004.","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Papers. 2004 Topical Meeting onSilicon Monolithic Integrated Circuits in RF Systems, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMIC.2004.1398186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We report an advanced power device layout structure, namely heat transfer counterbalanced (HTCB) layout, for designing power SiGe HBTs. It is shown that this new power device structure can substantially reduce adverse thermal effects of power devices without using ballasting resistors. Significantly improved power performances have been achieved from SiGe power HBTs employing the new layout concept.