Road-SLAM : Road marking based SLAM with lane-level accuracy

Jinyong Jeong, Younggun Cho, Ayoung Kim
{"title":"Road-SLAM : Road marking based SLAM with lane-level accuracy","authors":"Jinyong Jeong, Younggun Cho, Ayoung Kim","doi":"10.1109/IVS.2017.7995958","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the Road-SLAM algorithm, which robustly exploits road markings obtained from camera images. Road markings are well categorized and informative but susceptible to visual aliasing for global localization. To enable loop-closures using road marking matching, our method defines a feature consisting of road markings and surrounding lanes as a sub-map. The proposed method uses random forest method to improve the accuracy of matching using a sub-map containing road information. The random forest classifies road markings into six classes and only incorporates informative classes to avoid ambiguity. The proposed method is validated by comparing the SLAM result with RTK-Global Positioning System (GPS) data. Accurate loop detection improves global accuracy by compensating for cumulative errors in odometry sensors. This method achieved an average global accuracy of 1.098 m over 4.7 km of path length, while running at real-time performance.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

In this paper, we propose the Road-SLAM algorithm, which robustly exploits road markings obtained from camera images. Road markings are well categorized and informative but susceptible to visual aliasing for global localization. To enable loop-closures using road marking matching, our method defines a feature consisting of road markings and surrounding lanes as a sub-map. The proposed method uses random forest method to improve the accuracy of matching using a sub-map containing road information. The random forest classifies road markings into six classes and only incorporates informative classes to avoid ambiguity. The proposed method is validated by comparing the SLAM result with RTK-Global Positioning System (GPS) data. Accurate loop detection improves global accuracy by compensating for cumulative errors in odometry sensors. This method achieved an average global accuracy of 1.098 m over 4.7 km of path length, while running at real-time performance.
Road-SLAM:基于道路标记的SLAM,具有车道级精度
在本文中,我们提出了道路slam算法,该算法鲁棒地利用从相机图像中获得的道路标记。道路标记分类良好,信息丰富,但易受全局定位视觉混叠的影响。为了使用道路标记匹配实现环路封闭,我们的方法定义了一个由道路标记和周围车道组成的特征作为子地图。该方法采用随机森林方法,利用包含道路信息的子地图提高匹配精度。随机森林将道路标线分为6类,并且只包含信息类以避免歧义。通过与rtk -全球定位系统(GPS)数据的对比,验证了该方法的有效性。精确的环路检测通过补偿里程计传感器的累积误差来提高全局精度。该方法在实时运行的情况下,在4.7 km的路径长度上实现了1.098 m的平均全球精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信