{"title":"Multi-valley high-field transport in 2-dimensional MoS2 transistors","authors":"A. Serov, V. Dorgan, C. English, E. Pop","doi":"10.1109/DRC.2014.6872358","DOIUrl":null,"url":null,"abstract":"In this study we investigate for the first time both low-and high-field transport in few-layer MoS2 transistors using a two-valley band structure [Fig. 1], by combining simulations and experimental data [5]. We find that taking into account both the K and Q conduction band valley (with the Q valley along K to Γ being ΔE ≈ 0.13 eV higher) is necessary in order to understand all transport regimes. This finding clarifies the results of several theoretical band structure studies [6-8], which until now showed disagreement about this inter-valley separation. We demonstrate that a two-valley band structure and device self-heating should be taken into account to understand a wide range of transport in MoS2 transistors. Our results also help clarify the band structure of MoS2 as relevant for a variety of applications. This work was supported in part by NSF and STARnet/SONIC.","PeriodicalId":293780,"journal":{"name":"72nd Device Research Conference","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"72nd Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2014.6872358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this study we investigate for the first time both low-and high-field transport in few-layer MoS2 transistors using a two-valley band structure [Fig. 1], by combining simulations and experimental data [5]. We find that taking into account both the K and Q conduction band valley (with the Q valley along K to Γ being ΔE ≈ 0.13 eV higher) is necessary in order to understand all transport regimes. This finding clarifies the results of several theoretical band structure studies [6-8], which until now showed disagreement about this inter-valley separation. We demonstrate that a two-valley band structure and device self-heating should be taken into account to understand a wide range of transport in MoS2 transistors. Our results also help clarify the band structure of MoS2 as relevant for a variety of applications. This work was supported in part by NSF and STARnet/SONIC.