{"title":"IoT-enabled Soft Robotics for Electrical Engineers","authors":"P. Sundaravadivel, P. Ghosh, Bikal Suwal","doi":"10.1145/3526241.3530369","DOIUrl":null,"url":null,"abstract":"In the field of technology and engineering education, there is a lot of uncertainty as to what the future trends are going to be. The institutions are preparing and training their students for jobs that they haven't even explored yet. To overcome this uncertainty, new domains with overlapping skill sets are constantly integrated to engage students with technological development for the future computing era. Robotics and the Internet of Things have been a popular area of interest amongst Electrical and Computer Engineers with high global value. Soft robots can be described as a form of biomimicry in which traditional hard robotics are replaced by a more sophisticated model that imitates human, animal, and plant life. In this article, we discuss a problem-based learning approach to integrate key concepts of soft robotics into the undergraduate electrical engineering curricula. The proposed module can be easily integrated into any IoT and Robotics curriculum.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In the field of technology and engineering education, there is a lot of uncertainty as to what the future trends are going to be. The institutions are preparing and training their students for jobs that they haven't even explored yet. To overcome this uncertainty, new domains with overlapping skill sets are constantly integrated to engage students with technological development for the future computing era. Robotics and the Internet of Things have been a popular area of interest amongst Electrical and Computer Engineers with high global value. Soft robots can be described as a form of biomimicry in which traditional hard robotics are replaced by a more sophisticated model that imitates human, animal, and plant life. In this article, we discuss a problem-based learning approach to integrate key concepts of soft robotics into the undergraduate electrical engineering curricula. The proposed module can be easily integrated into any IoT and Robotics curriculum.